A REMARK ON A PAPER OF V. ISTRĂTESCU

SHANTI PRASANNA AND I. H. SHETH

Department of Mathematics, Gujarat University, Ahmedabad 380009

(Received 13 March 1979)

Let T be a bounded linear operator on a Hilbert space H. We denote by Z_T and R_T respectively the centre and radius of the smallest circular disc containing the spectrum of T. In this note we prove that

$$\sup_{\|x\|=1} \{ \|Tx\|^2 - \|(Tx,x)\|^2 \} = R_T^2$$

if $T - Z_T I$ is normaloid and thereby extend the results of Björk and Thomee (1962) for the case of normal operators and that of Istratescu (1972) for the case of transloid operators.

Let H be a complex Hilbert space. For a bounded linear operator T on H, we denote by σ_T and $r_{\sigma}(T)$ respectively the spectrum of T and spectral radius of T. Let d_T be the smallest circular disc containing σ_T , C_T its boundary, Z_T its centre and R_T its radius. In this note we study a property of a bounded linear operator T on H for which $T - Z_T I$ is a normaloid.

Björk and Thomee (1962) have proved the following theorem for normal operators.

Theorem 1 — If N is a normal operator,

$$\sup_{u \neq 0} \left\{ \frac{\|Nu\|^2}{\|u\|^2} - \frac{\|(Nu, u)\|^2}{\|u\|^4} \right\} = R_N^2 \qquad \dots (I)$$

Istratescu (1972) has extended this result to the case of a transloid operator T (i.e. $T-\lambda I$ is normaloid for all complex λ) (Istratescu 1972). In both the cases the proof is mainly based on proving that $Z_T \in \text{convex null } (\sigma_T \cap C_T)$ and finding distinct points $\lambda_1, \lambda_2, ..., \lambda_r$ (r=2 or 3) such that $|\lambda_r - Z_T| = R_T$ and expressing Z_T as a linear combination of the λ_r 's. Naturally this leads one to question whether the condition $T-\lambda I$ is normaloid for all complex λ is necessary for the equality (I) to hold. In fact our investigation shows that even under a weaker condition namely $T-\lambda I$ is normaloid only for $\lambda=Z_T$, the equality holds.

Theorem — Let $T \in \beta(H)$ and Z_T , R_T as defined above. If $T - Z_T I$ is normaloid, then

$$\sup_{x \neq 0} \left\{ \frac{\parallel Tx \parallel^2}{\parallel x \parallel^2} - \frac{\mid (Tx, x) \mid^2}{\parallel x \parallel^4} \right\} = R_T^2.$$

Lemma 1 — Let $T \in \beta(H)$. $\sigma_T \cap C_T \neq \phi$.

PROOF: Suppose $\sigma_T \cap C_T = \phi$; σ_T and C_T being compact subsets of the complex plane, $d = \text{dist}(\sigma_T, C_T) > 0$. Then the circular disc with centre Z_T and radius $R_T - \frac{1}{2} d$ contains σ_T contradicting the fact that d_T is the smallest circular dics containing σ_T .

Lemma 2 —
$$r_{\sigma}(T - Z_T I) = R_T$$
.

PROOF: By Lemma 1, $|Z_T - \lambda_0| = R_T$ for some $\lambda_0 \in \sigma_T$. Since

$$|Z_T - \lambda| \leqslant R_T \forall \lambda \in \sigma_T$$

the result follows from the definition of the spectral radius.

Lemma 3 — $Z_T \in \text{convex hull } \{\sigma_T \cap C_T\}.$

PROOF: Suppose not. Then we can find a closed half circle $h \subset C_T$ such that $\sigma_T \cap h = \phi$. Since h and σ_T are compact, $d(h, \sigma_T) > 0$. Hence it follows that σ_T is contained in a smaller circular disc than d_T .

Proof of Theorem:

$$||Tx||^2 - |(Tx, x)|^2 = ||Tx - \lambda x||^2 - |(Tx, x) - \lambda|^2$$

for any complex λ .

In particular taking $\lambda = Z_T$ and taking supremum,

$$\sup_{\|x\|=1} \left\{ \frac{\|Tx\|^2}{\|x\|^2} - \frac{|(Tx, x)|^2}{\|x\|^4} \right\}$$

$$= \sup_{\|x\|=1} \left\{ \|Tx - Z_Tx\|^2 - |(Tx, x) - Z_T|^2 \right\}$$

$$\leq \sup_{\|x\|=1} \|(T - Z_TI) x\|^2 = \|T - Z_TI\|^2$$

$$= [r_{\sigma}(T - Z_TI)]^2 \text{ (since } T - Z_TI \text{ is normaloid)}.$$

$$= R_T^2 \text{ by Lemma 2.}$$

Now we will prove that the supremum is in fact attained.

Since $Z_T \in \text{convex null } (\sigma_T \cap C_T)$, there exist two or three distinct complex numbers $\lambda_1 \dots \lambda_r$ $(r = 2 \text{ or } 3) \in \sigma_T \cap C_T$ such that

$$|\lambda_i - Z_T|^2 = R_T^2$$

$$Z_T = \sum_{i=1}^r m_i \lambda_i$$
 with $\sum_{i=1}^r m_i = 1$ and $m_i > 0$.

Since

$$\lambda_i - Z_T \in \sigma(T - Z_T I)$$

and

$$|\lambda_i - Z_T| = R_T = r_\sigma(T - Z_T I) = ||T - Z_T I||,$$

there exist sequences $(\{x_{\underline{u}}^{(i)}\})$ of unit vectors such that

$$\|(T-Z_TI) x_n^{(i)} - (\lambda_i - Z_T) x_n^{(i)}\| = \|(T-\lambda_i) x_n^{(i)}\| \to 0$$

and

$$\| (T^* - \bar{Z}_T I) x_n^{(i)} - (\bar{\lambda}_i - \bar{Z}_T) x_n^{(i)} \| = \| (T^* - \bar{\lambda}_i) x_n^{(i)} \| \to 0.$$

Now

$$\lim_{n\to\infty} (\lambda_i - \lambda_i) (x_n^{(i)}, x_n^{(j)}) = \lim_{n\to\infty} \{ (\lambda_i x_n^{(i)}, x_n^{(j)}) - (x_n^{(i)}, \tilde{\lambda}_j x_n^{(j)}) \}$$

$$= (Tx_n^{(i)}, x_n^{(j)}) - (x_n^{(i)}, T^*x_n^{(j)})$$

$$= 0.$$

This implies $\lim_{n\to\infty} (x_n^{(i)}, x_n^{(j)}) = 0$ for $i \neq j$. Now we define

$$x_n = \sum_{i=1}^r \sqrt{m_i} x_n^{(i)}.$$

Then as $n \to \infty$,

$$||x_n|| \rightarrow 1, ||Tx_n - Z_Tx_n||^2 \rightarrow R_T^2$$

and

$$(Tx_n, x_n) \to Z_T.$$

Hence the supremum is attained and

$$\sup_{\|x\|=1} \left\{ \frac{\|Tx\|^2}{\|x\|^2} - \frac{|(Tx,x)|^2}{\|x\|^4} \right\} = R_T^2.$$

ACKNOWLEDGEMENT

One of us (S.P.) would like to thank the Gujarat State Government for the award of a Gujarat State Research Fellowship.

REFERENCES

Björk, G., and Thomee, V. (1962). A property of bounded normal operators in a Hilbert space. Arkiv. Math., 4, 551-55.

Istratescu, V. (1972). On a class of nomaloid operators. Math. Z., 124, 199-202.