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ON ORTHOGONAL POLYNOMIALS OF TWO VARIABLES

V. K. JAIN
Department of Mathematics, University of Roorkee, Roorkee 247672

(Received 21 May 1979)

Polynomial solutions of two differential equations of Krall and Sheffer (1967)
related to orthogonal polynomials are obtained. Recurrence relations and
generating functions of these polynomial solutions are also discussed.

§1. Krall and Sheffer (1967) characterized the orthogonal polynomials in two
variables through a set of differential equations. Among the various differential

equations they encountered all of them were solved except four of them, viz. eqns.
(1.1), (1.2), (1.3) and (1.4)

3yWee + 2Wey — (W + yWy) +nW =0 ..(1.1)
(X 4+ @) Wew + 2y + 1) Woy + (xWa + yWy) — nW =0 (1.2)
X2 Wy + 2yWay + (0 — ) Wiw + 8(x — 1) Wa
+egy— )Wy —nn—1+g) W=0 .(1.3)
G4y + 1) Weo + Qxy + 2x) Way + (02 + 2y + 1) Wy .
+ gxWe + yWy) —n(n —1 + g W=0. ..(14)
The solutions of above differential equations are of the type
Py g a(x, y) = xn-kyk 4 lower degree terms.
(k=0,1,2,...,n and n=0,1,2, ...).
The solution of (1.1) was given in the closed form by Anthony Du Rapau (1967) as
n—k [}(n—k—q)]

Toep(x,y) = Apk—2p—a,k4p-g XV E2P-O BP0 (].5)

g=0 p=max (0, g—k)

k
— -q 20~k k
where An—r-2p-0,k+p-q = ((p—-)j(;_):’;—_%j—!? (—n + k)2p4q E (—)2r ( r )

r=0
X (=@ (=P — T)r.

Whereas the solution of (1.2) was obtained later on by Krall and Sheffer in the form
(unpublished research notes)
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Mis(x, y) = z 2= (i bt D ) (=) o 302

k=0 1=0
X (x + 2% (p + 1) LL(L1.6)
It might be of interest to note that this solution can be expressed as the product of

two Laguerre polynomials, viz.,

Mo(x, y) = 231 j L (—x — w) L&D (— 17*“—1) 1T

where Laguerre polynomials Lfl') (x) are defined by

. (1 4+ (l)n
= r——-——-n'

Lf:') (x) Fi(—n; 1+ o; x).

The purpose of this paper is to investigate the solutions of the remaining two
differential eqns. (1.3) and (1.4). These solutions, as indicated by Krall and Sheffer
(1967), are non-classical orthogonal polynomials. The recurrence relations and
generating functions of the polynomial solutions of (1.3) and (1.4) are also obtained.

§2. Assuming the solution of (1.3) in the form

W = Rup_xx(x, y)= X Z A4, xrys ...(2.1)
r

where A, = 0 when r + s > n and Ap—i = [(1) :? ii II:]
and substituting (2.1) in the differential equation (1.3) and equating the coefficients
of like powers of xrys, we have
(r+ s —(r+5) +gr+s—n—n+nd,
= (s + 1) (s + &%) Aryoqr + g(r + 1) 4ria,e. ...(2.2)
The solution of this recurrence relation is

A _(=k)s(=k — gz + 1)
RES T T3 (2 — 21 — g),

3g(n — k) (— k — ga + 1)y (—k)s

An-pap2 = 312 —2n — g);
| _ 3g¥(—n + k)y k(k + gz — 1)
kg1 == 312 —2n— gl

PN I E
kT 3T@ — 2 — 8
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The symmetry of the above values of A4,,, gives us the solution of (1.3) viz.

(=) g"H(gw)x
(g+n—1n

‘0 g (=1 + k) (—k)p (g + 1 — Dusy (-’gi)’ »  (23)

Rﬂ—i,k(xa Y, &, “)

n

< Jtpl(ge)s

(wherek =0,1,2, ..., nandn =0, 1, 2, ...)
which could be verified directly by substituting (2.3) in the differential equation. (1.3).

For the sake of simplicity alone we consider the polynomial Ra_z,x(gx, ¥, &, (%/g))
and shall denote it by Pn_s,k(x, y, g, «) i.e.

Ppn_yx k(x ¥, 8, OC) (,_)."_gn_k(ﬁ)l,

(g+n—1)
n—k k
—n + k)i (— k)y
ZO Z JTpl () (8 + 1 — Dy xiy2. w(2.4)

To economize further we would only exhibit those of the parameters g and «
which undergo change in a particular equation and if none of x, y, g and « undergoes
change in a particular equation the polynomial would be simply denoted by Pp_z,z.

It may be worth mentioning that Pn_s is nothing else but thesumofn — k + 1
index dependent Jacobi polynomials P{" 7" #=1=%=%) (1 _ 23)  In fact, we have

n—k
P =(_)ugn—kk!z (— n+k),(g+n—'1)!
n—k,k (g +n— 1)” _]'
Jj=0
% P?_1,g+n+§-—1-—\¢~—k) (1 __ 2}’)- (25)

Making use of the integral representation for the Jacobi polynomial (Rainville 1960)
we obtain the following integral representation for the polynomial P :

1
(=gl +n—i

Pi,n_i = P(g T T ]) P(o{. e ——— l) S tg+n—~2(1 — I)a—g-n
0
—i —xt
X(l—yt)"'Y,-(g—l—n-—a t,l_t)dt .(2.6)

where Yn(c; x), the Bessel polynomial, is defined as

Yu(c; x) = Fo(—m, ¢ + m; —; x).
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We could have also put P;,._; as the sum of n — i 4 1 index dependent Bessel
polynomials Y(g +n +p — i — 1;x):

n—i

(=)" g ()n—s (—n+ip(g+n—1)yy»
Pi,n—-i =

T (g+n—1n Pl (@)
X Y(g+n+p—i—1;x) .27

Using the integral representation for the Bessel polynomial (Al-Salam 1957)
we get the integral representation of the polynomial Pup,x :

(=) g *k!

[+ o]
= @ . — n— — n— (x—1)
T +2n—1) Ie totn=2(l — xt)vk L>77 (pt) dr.  ...(2.8)

0

Py =

It is of interest to note that the polynomials P,(c“"l’”"“_l"“_” (1 — 2y) and

Y{g + n + p — i — 1; x) are non-orthogonal polynomials in one variable whereas
their finite linear combinations as given by (2.5) and (2.7) yield orthogonal poly-
nomials of two variables. Next we prove a relation expressing Pia; as a sum of
i + 1 products of orthogonal Jacobi and Bessel polynomials, viz.,

p () g@ns(m — D
B ST @+ = Da

3 z (=Y (=i)(@+n—1),2n—2i+g—1),2n—2i+g—1+2r)
< r! (%)n—2i4r (2” — 2i 4+ g — 1)i+r+1
r=

X Yi(2n — 2i + g— 1; x) PELEH1) (1 gy, .(2.9)

n—-2it+r

In order to obtain (2.9) we start by replacing x/ in the Definition (2.4) of the poly-
nomial P;n-; by using the relation (Rainville 1960, p. 294)

j .
xf:Z(J)(—)r(c)f(c+2r)yr(c;x) for c=2n—2i+g—1,

r, (€)4rsa
r==0
to obtain
o "—i I3
I (OF N S S LS A
T @@+ —1n 0 Pl (@)
p=

(equation continued on p. 496)
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% z(~—i)r(g+n—-l+P)r(2n——2i+g—-l),(2n—2i+g—-1 +2r) (=)
r'(2n — 2i +g — o pa
r=0
><2l,,~l[—i-+r,g+rz~1+r+17;

% — 24 g+ 2r ]Y,(Zn-—Zi-}-g—-l;x). (2.10)

To obtain the last line we use the Gauss® summation theorem for ,F;(1) (Rainville
1960). Using the definitions of Jacobi and Bessel polynomials we get (2.9).

We may deduce from (2.9) that the set of polynomials {P: n—i(Z, )} are ortho-
gonal with respect to the weight function

[0}
) ) 1 2n—2i+g—~1)
o D2itg-lym—1(1 __ )2itg-a—1 __ ~
p(Z, y) = 2%+e-lya-1(] — y)iits 2ni2(2n—-2i+g—1),zl
1=0

(2.1)
where the integration with respect to Z is carried out on the unit circle | Z | = 1
and with respect to y from 0 to 1 respectively.
The moments ama associated with the polynomial (2.4) are
2i+g-1 [ —
e 2%ty T +m T2 + g —w) 212)

T (@ =2+ g TQi+m+tg)

and the norm of Py n, is

i) 1!{ [Pijni(Z, y, &, W) (2, y) dZ dy

_ 2wteighon — 24 g — 1) (1 — D)) (@
- (n —_ 2!)' (a)n_gi (g “+n— l)n

Pe+n—0)T'(n+ g — «)
en -~ 2i4+g— 1) Ng+ 2n—1)

W p [ UtE—Lntg—antg—1 i~ “1]. . (2.13)

n—2i+ae,n—2i+1,2n—i+g2n—-i+g

Straightforward manipulations show that the polynomials {P; .} satisfy the
recurrence formulae

(2n + g — 1), [X(Pisayn-ide — (i + 1) Piyan] — (i + 1) [x(Pi;n1)s
+@2n—i+g—1)Pias]l =@ — ) — i+ a—1)[x(Pis1,0-i-1)a

— (@ + ) Piapnia] =0 ...(2.19)



ON ORTHOGONAL POLYNOMIALS OF TWO VARIABLES 497

and
Cn+g—1Pin-siyy —(n — i+ 1) Pijpsa] — (n—i + 1)
XM~ i+ a)[YPins)y +(n+ i+ g—1)Pini]
— g [Y(Picyyn—iya)y — (n — i + 1) Pi_ypeia] = 0. ...(2.15)
The differential recurrence relations with a change in the parameter g are
(g + 2) [Prn-i(®)]e = i8'Pi_1,n-(g + 2) ...(2.16)

(8 + N1 (2n + g — 2) x [Pipn-i(®)]e = i(2n + g — 2)(g + 1) Py ni(g)
+ ig'Pian-i(g + 1) ...(2.17)

(@n+g—2)(2 + 1Y p[Pini@)ly = (n— i) (2n + g — 2) (g + 1)’ Pi,ni(8)
+@m—i)y(n—i+a—1)gPinialg +1). ..(218)

Using (2.16) and (2.17) we can get the following pure recurrence relation
satisfied by P;,n_:: '
(8 — 2y (@ — 1y (2n + g — 4 xPi_1,0-(g) = gUg — 2)* Pi_a,n-(g — 1)
+ g g — DY 2n + g — 4) Piai(g — 2). ...(2.19)
Next, we observe that

kgn—k
§+D*2—g—2n

Poria(g+ 1,0+ 1)
..(2.20)

(where Aof(2, B) = f(e + 1, B) — f(= B)

AuPn—k,k(g’ ‘1) =

and so in general,

(=) (—k)sgr*
—g—2n)s(g+s

A: Pﬂ—k,k(g, d) = (2 ),._g P"—","—S(g + 5 + S).

...(2.21)
Making use of Newton’s formula
m
fle@+m= z (';’) AL f(@) .(2.22)
s=0

and (2.21) we get the following general recurrence formula satisfied by Pa_x,x(x + m):

- m (=) (—k)s gn*
Posp(g, o + m) = z ( s ) C—8— 2n)(g + sy

§=0

X Porg-o(g8 + 5 a + 5). ...(2.23)




498 V. K. JAIN

Similarly we may obtain

Pinilg + m, ) F= g ; gzﬁgnt':l)); —io mg: (s 3—3 r)

s+ r\(—=i)s(—n+1i),
X( r ) (& ~ Dngesr

X (=X (=) Picsynoicr (8 + 25 + 2r, ¢ + 7).
(2.24)

(8 + 25 + 2r)p-

We also notice that the polynomials {P;n_;} have a generating function

S % (6= D st
z 2 @ — 1) o iln — iyt Do =M

= (1 — xsyve—s=t Fl g — 1;a; 2 y’ (2.25)
(1 — xs) 2

For proving (2.25) we replace g by (g — ») in (2.4) and then on multiplying

. — 1), sign-i
both the sides by (oc),.,..-((gg — ’:}i )

and summing for i from 0 to n and then

n from 0 to co we have

[e o] n
. (g— D sign—i ' _
0= Zo Zo: G m @ T =i o =1
- ) sign—i (—-1); (—n+1i)
=D Emn-mE Z T
n=0 §=0 J_ P‘—‘

X (g — 1)igp xiy?. ...(2.26)
In the R.H.S. of (2.26) rearranging the series wé get

S3S S Sesteeorcrcn

p=0 j=0 i=0 n=0

oyt
= (1 — xs5)1-9 e~o~¢ , F, [g —1;0a; Ty:}}]
§3. We begin this section by presenting a solution of the differential equation
(1.4) in a closed form. On replacing y + 1 by y (1.4) reduces to

(x2 + 3) Wae + 2xyWay + y* Wy + gxWo + g(y — 1) Wy
—nn—14+g) W=0. ' ..(3.1)
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Next, assuming the solution of (3.1) in the form (2.1) and proceeding on the
same lines as in §2, we find that A, satisfy the recurrence relation

(r + ) — (r+s)+g(r+s—n)—n+ nlA,,
=g(s + 1) drea — (r + 1)y Aryo 5. (3.2

Solving this recurrence relation, we get the solution of (3.1) viz:

[n—k)/2] k4

’ B (—)it? go(— n + k)
On-ralx, 5, 8) = z 2 P12 — 2n — g)pys

j=0 p=0

min(j, p) .

% z (“‘])l("‘;;p)ll!(‘_‘k)P—‘(__)zxu—k-?jyk-v+1._'(3_3)
=0

which may be verified by a direct substitution of (3.3) in (3.1). Here [//2] means
the greatest integer < [//2]. For the sake of convenience we would abbreviate

Oni,i(x, y, g) simply as On—t,x and On—r,1(g'/?x, g, &) a8 Qn—k,1(8)-
It can be shown that Q. x(g) satisfy
8" [Qeitan2:(g — 2)]s = (20 4 1) (g — 2)2n-244112 Qoin oi(g)  ...(3.4)
gD [0y n2ilg —2)]e = 2i(g — 2)"* Qria,n-2(8) ...(3.5)
(8% + g)en2-D12 (2n + g — 2) [Q2ian-20(8 — 2y
= (g — @22 (g 4 [)en-2i-1)72
X (n— 2i) (2n 4 g — 2) Qoisa,n2ia(g) + 2i(20 + 1) gen-2i-1)/2
X (g — 2)En-24N12 Qg 3 nai(g + 1) ...(3.6)
(2n + g — 3) gn-2-D/2(g — 1)=n [Qisn (g — Dl

= 2i {y[Q2i-a,n-2:()ly + x[Q2i-1,n2(8)]z + (g + n— 2) O2i1,n—2i(8)}
...(3.7)

gri(g — 1202 y [Osi1,n-2i(8 ~ 2y
= gni(g — 2)@n2HD2 (2n + g — 1) OQoiga,n-2i(g — 1)
— gri(g — )22 (n 4 g — 2) Onigan2i(g — 2)
— (2i + 1) (g — NEn-23+0)12 (g — 2)(2n-26t1 /2% Oy; 0 2i(g) ...(3.8)
@+ 2nt+g—4 [Qain_2:(g — 2)lv
= (g 4+ DriY(g — 2n* (n — 2i) 2n + g — 4) Qai,n2i-1(8)
2020 — 1) g} (g — 27 Osi-gynai(g + 1) (3.9
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20+ 1) » [Qto-al®l = (g + 20 — 1) gni(g — 1)ti-ta-nir
X [Qaigynezi(g — D)z — (2 4 1) {x [Q2i,n-2i(2)]=
+ (g + n—1) Ounai(g)} ...(3.10)
and
geen-2-112(g — 1)~ p [Oai nai(g — 2)lv
= glan-2-1)/2(g _ )a~i (21 4 g — 3) Qi n-ai(g — 1) — gl2n-2i-1)j2
X (& —Dri(n+ g — 3) Quipnrig — 2) — 2i(g — 1)+
X (g = 2" xQaia,n-2(8)- ..(3.11)
(3.7), on using (3.4) - (3.6), yields the following pure recurrence relation
(2n + g — 3) (g + 1220112 Qo 3 0 9i(g + 1)
= y(n — 2i) (g + 2)F2DE Qgi 018 + 2) + W2 — 2),
(2n + g —4) (g + 3NE-OR Oy g ailg + 3)
+ x(2i — 1) (g + 2y Qoi o0-2(8+ 2) + (8 + n — 2)
X g2t 200, 1 o oi(g). ..(3.12)
Similarly, (3.10) in view of (3.4), (3.5), (3.9), gives the pure recurrence relation
Y+ 1) (n — 20) (g + 27" Quinaica(g + 2) + ¥(2i — 1)
X (2n 4 g — 2y (g + 3) ! Qnionai(g + 3)
=@+ DE+2n—1D(g+ DV Qein2i(g + 1)
—_— xQ2£-—d,n—2i(g + 2) (21)2 (g + 2)(2i—2n+1)/2
— i + 1) (g + n — 1) g7Qsi,n-2i(8)- ---(3.13)
Using (3.4) - (3.11) we may obtain other pure recurrence relations. Next, we
prove that according as i is even or odd generating functions of Q; «-i(g) are

o [n/2)

z z (g — 1)” sin— iQ2! n—2i(g - n) (1 —yt — yst)l_g e—t(s+2)/2
n=0 i=0

(n =20 2i)! (g — my~*

x2st
__, Pt A, ...(3.14
X oFy 2 ’%’(1 yt-—ySt)“] G19
and
w [n/2)
z z (8 + Dnst™ Qo128 — 1) xe Kot 12
(n— 201 (2i + 1)1 (g — n)@24D2 — (1 — yt — pst)ite
n=0 i=0
g+ 1 g . 3. x2st .
X aFl[ 3 4 p) + 1; % —_(l —_ _yst)z "'(3'15)
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For proving (3.14) we replace g by (g — #) in the definition of Q:2:,n—2:(g) and multiply
— ign—1i

both sides by (8 — Dn st , sum for i from 0 to [%] and then for n

(n — 20 2i)! (g — n)»?°
from 0 to oo, we have

o 2]
— (8 — Dan S0y n-2i(g — n)
S= Z Z = 201 @) (g — ny

o [nf2] i n—i—j
_ z ( )n—a gifn—i
i — (n — i)! 2 : § :
n=0 i=0 j=0 p=0

min (i—j, n—i—p—j)
% (=) (=D)ipa(=n+ Digpa (8 — Daigy xzfyl’
JU @ (J+p+i—i)dn

=0
...(3.16)
In the R.H.S. of (3.16) rearranging the series we obtain
o0 o foe) © ©
— z z 2 z z (—)rti (g — D2singi (.ﬁsl)i
! iptlt \'4
]=0 n=0 i=0 p=0 =0 J ('})’n 1 p
. st \¢
X (ye)n (yts) t? (_2_) e

summing the n, i, p and / series we get (3.14), The proof of (3.15) follows on
similar lines.
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