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In this paper the relation between a Riemannian 5-regular symmetric manifold
M and the homogeneous space G/H is found, where G is the identity compo-
nent of the Lie group of all almost complex isometries on M and H is the
compact subgroup of G which leaves a fixed point of M fixed.

1. INTRODUCTION

In Helgason (1964) the following result is proved.

Let G be a Lie group which acts transitively on a manifold M. Let H be the
isotropy subgroup of a fixed point P € M. Then H is a closed and G/H is
diffeomorphic to M under the map

f:GIH-> M
given by f(gH) = g.p,g € Gandp € M.

Definition 1 — Let (M, g) be a Riemannian manifold, if for each point P € M,
there exists a neighbourhood U, of P in M and a local symmetry S, of P such that
Sy is an isometry of Uy, then M is called locally symmetric manifold.

In Kobayashi and Namizu (1963), it was proved that the set I(M) of all
isometries acting on a locally Riemannian symmetric manifold is a transitive Lie
transformation group. Hence it is diffeomorphic to G/H where G is the identity
component (connected) of /(M) and H is the compact subgroup of G which leaves
a fixed point of M fixed. In Hausner and Schwartz (1968) it is proved that a closed
subgroup of a Lie transformation group is a Lie transformation group.

Definition 2 — A Riemannian locally 3-symmetric manifold is a manifold with
a family C(M) of 3-order isometries £ ~» S, each of which is an almost complex
isometry of the family.

Gray (1971) proved that the family of 3-order isometries C(M) acting on a
Riemannian locally 3-symmetric manifold is a Lie transformation group, hence the
manifold is diffeomorphic to G/H where G is the identity component of C(M) and H
is the compact subgroup of G which leaves a fixed point of M fixed.

Unless otherwise stated, all manifolds, maps, vector fields and tensor fields are of class Gpe.,
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2, THE RIEMANNIAN LOCALLY 5-SYMMETRIC MANIFOLD CASE

Definition 3 — A Riemannian locally 5-symmetric manifold is a manifold with
a family C(M) of 5-order isometries P — S, each of which is an almost complex
isometry of the family. Sj is called a symmetry at p.

Al-Ageel (1977) proved that there is an almost complex structure J on M asso-
ciated with the family C(M). Ledger and Obata (1968) proved that the set (M) of
all isometries acting on a locally 5-symmetric manifold is a transitive Lie transfor-
mation group of M. A Riemannian locally 5-symmetric manifold is said to be a
Riemannian 5-symmetric manifold if each S, is a global isometry.

Definition 4 — A Riemannian locally 5-symmetric manifold is said to be regular
ifdf o J=J o df where f € I(M).

Theorem 1 — The set C(M) of the group of all almost complex isometries on
a Riemannian 5-regular symmetric manifold is a transitive Lie transformation group
of M,

Proor: Forall P € M, S, € C(M) and since we only need symmetries to
prove the tranmsitivity of C(M) (see Ledger and Obata 1968), we conclude that C(M)
is transitive on M.

Let {f»} be a sequence of almost complex isometries which converges to f in
(M), where I(M) is the set of all isometries on M. The associated almost complex
structure J is continuous. We have df, o J = J o df, for all n. From the continuity
of Jweseethatdf o J = J o df, and f € C(M). Hence C(M) is closed in I(M)
and I(M) is a Lie transformation group in M, this implies that C(M)is a Lie
transformation group of M.

If G is the largest connected component of C(M) i.e. the identity component of
C(M) and H is the compact subgroup of G which leaves a fixed point of M fixed,
then M is diffeomorphic to G/H.

Theorem 2 — Let M be a Riemannian 5-regular symmetric manifold. Then

(i) The 5-symmetry Sy, P € M induced a 5-automorphism ¢ of G, defined by
Hg) =S, o g o S5 forallg € G.

(i) If Hy is the subgroup of G of fixed points of ¢, then
(H#)y C H C Hy

where (Hs), is the identity component of Hs. Also H contains no normal subgroups
of G other than {e}.

Proor: ¢ : C(M) — C(M) is an automorphism of C(M), and since it maps
connected components to connected components, it is also automorphism of G. Now
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$%(8) = ¢[$(8)] = §(Sp © g o S) = S}o g o S,?

$5(8) = Bl = 850 g o S =g

which proves that ¢ is a 5-automorphism of G.

Let h € H, then at P € M we have
[d$))y = [dS, o dh o dST'],
o dh o [((cos ¢,) I + (sin g,) J;) @ ((cos ¢,) 1
+ (sin¢;) Jp)ly © dh o [((cos ¢,) T + (sin ¢,) J})
® ((cos g;) I + (sin ¢,) J,J*

= [((cos ¢1) I + (sin ¢,) ;) & ((cos ¢,) I + (sin ¢,) Jplp
o dh o [(cos §) T + (sin ¢) )t & ((cos g) I
+ (sin ¢,) J3)

= [((cos ¢;) I + (sin ¢,) J1) @ ((c0s #,) T + (sin ¢,) J,],
o dh o [((cos ¢,) I; + (sing)* & ((cos ¢,) I -+ (sin ¢,) J5)4],

= [dh],.

Sinceh € C(M)ie.dh o J=J o dh
Also ¢(h) (p) =(Sy o ho S;l)(p) =p

¢(h) = h
HCH.

Lett— g, 1 € R, be a I-parameter subgroup of Hs. Then ¢(g:) = g:. Also
(S o ) (p) = (g © S») (P) = g(p). Hence the orbit {gi(p) | # € R} is fixed by
S, for all € R. But pisan isolated fixed point of S,. This means that {g:(p) | # € R}
must reduce to p. Hence g: € H, but g; is a 1-parameter subgroup of Hs and (Hy),
is the identity component of H, This implies that (Hy), C H.

Let T be a normal subgroup of G in H, let g € G. Then for each k € T,
there exists &' € T such that k'g = gk. Hence k'g(p) = gk(p) = g(p) for all
g € G;ie. if x € M, and since G is transitive on M, there exists g’ G such that
g'(p) = x, and we have k’'-g'(p) = k'x = g'(p) = x. But G acts effectively on M,
so k' = e, and therefore T = {e}.
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Theorem 3 — Let M be a Riemannian S-regular symmetric manifold and let g
and h be the Lic algebras of G and H respectively. If ¢ : G — G given by ¢(g) =

Sy o g o S;*. Then
h={X€g|(@@ X=X}

and if we have
m={XEg|X+ (@ X+ ... + (dd): X = 0}, then
g = m & h (direct sum).

Let = : G — M be the natural map given by g — g(p), then (dy). map h into
{0} and m isomorphically onto M,.

PROOF : ¢ : G — G is an automorphism of order 5, hence (d$).: g— g is an
automorphism of order 5 i.e.

(dg); — I=0.
Consider the polynomial
fy=6 —1=0¢—-1DE+ 2+ 41+ 1) =g()e)
where g,(t) and g,(¢) are relatively prime.
Also

SI(dg)e] = 0
g=hom

where
h = kernel g,[(d$).] = {X € g| (d¢). X = X}

and

m = kernel g)((dg)] = (X E g | X + (df). X + ... + (df); X = 0}

The map = ;: G — M maps H onto p and therefore h kernel (dx)..

Let X € kernel (dn)., then if g € C=(M) we have
d
0 = (@) ) (®) = X(g « ) = {5 s(exp ()2} .

Let s € R and consider the function

g*(g) = g(exp (sX)-9); g € M. Then
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o= {a e @ n} - {5 s e n}
dt {0 dt tea
which shows that g(exp (sX)-p) is constant in s.
g is arbitrary and we have
(exp (sX))(p) = p for all s € R, and so X € h. Hence (dx). vanishes on h. So
rank = = (dimension g — dimension h)
= (dimension G — dimension H)
rank = = dimension G/H = dimension M

Hence (dr), maps m isomorphically onto M.
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