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Considering the cylindrically symmetric metric of Marder, we have constructed
a non-static cylindrically symmetric cosmological model which is spatially
homogeneous nondegenerate Petrov typel. The energy momentum tensor
has been assumed to be that of a perfect fluid with an electromagnetic field
and the d4-current is cither zero or space-like. The model represents an
expanding and shearing but non-rotating fluid flow which is also geodetic.
The requirement of positive conductivity for a physically realistic model
imposes an additional restriction on the metric potentials. Various physical
and geometrical properties of the model have been discussed.

1. INTRODUCTION

In recent years there has been a lot of interest in magnetohydrodynamic cosmo-
logies in general relativity. Cosmological models in the presence of a magnetic
field have been studied by Zeldovich (1965) and Thorne (1967). Galaxies and inter-
stellar spaces exhibit the presence of strong magnetic fields (Zel'dovich and Novikov
1971). Monoghan (1966) and Seymour (1966) have discussed the magnetic field in
stellar bodies and Ginzburg (1965) has studied the gravitational collapse of the
magnetic star.

Jacobs (1967) has studied the behaviour of the general Bianchi type I cosmo-
logical model in the presence of the spatially homogeneous magnetic field. This
problem has been studied again by De (1975) with a different approach. This work
has been further extended by Tupper (1977a) to include Einstein-Maxwell fields in
which the electric field is non-zero. He has also interpreted certain type VI cosmo-
logies with electromagnetic field (Tupper 1977b).

Recently Roy and Prakash (1978) taking the cylindrically symmetric metric of
Marder (1958) have constructed a spatially homogeneous cosmological model in the
presence of an incident magnetic field which is also anisotropic and nondegenerate
Petrov type I. In this paper the energy momentum tensor has been assumed to be
that of a perfect fluid with an electromagnetic field and a spatially homogeneous
cosmological model has been obtained. Itis found that the model represents an
expanding and shearing but non-rotating fluid flow which is also geodetic. We have
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also shown that the model has a 4-current which is either zero or space-like. The
latter corresponds to the case of magnetohydrodynamics (MHD). The requirement
that the conductivity be positive imposes an additional restriction on the metric
potentials. It is found that the electromagnetic field gives positive contributions to
the expansion, shear and free gravitational field which die out for large values of
time at a slower rate than the corresponding quantities in the absence of the electro-
magnetic field. When the cosmological constant A= 0, it is found that in the
absence of electromagnetic field pressure and density become equal and conversely if
pressure and density are equal (stiff matter) there is no electromagnetic field,

2. SorutioN of THE FIELD EQUATIONS
We consider here the cylindrically symmetric metric in the form given by
Marder (1958)
ds? = A2(dt? — dx?) — Bdy? — C?dz? (2.1
where A, B, C are functions of ¢ only. The distribution consists of a perfect fluid
and an electromagnetic field. Thus

Gis + Agis = —K[(p + p) Xids — pgi; + Eij] -..(2.2)
guAIN = 1 (2.3)
Ey = g*PFiFip — }guFapFo® ...(2.4
Frp =0 . (2.5)
Fi=Ji ...(2.6)

3§
where E;; is the electromagnetic energy-momentum tensor, F; the electromagnetic
field tensor, A cosmological constant, J¢ the current 4-vector and p and p are the

density and pressure of the distribution. The coordinates are chosen to be comoving
so that

Al=2=X8=0,XM= 1. (2.7)
A
We label the coordinates (x, y, z, t) = (x}, x2, x3, x%).
The off-diagonal components of (2.2) are
(2)  FppFy B 4 FFpiC* =0 )
(b) F1,F, 472 — FpFC2 = 0
c Fi Fi A2 + F,F, Bt = 0
() 13% 14 —f 28% 24 } ...(2.8)
(d) F Fpud? — F,F,C2 =0
) F Fd™® + F,FpuB2 = 0

(f) F24Fu — FpF5 =0 J
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which lead to three possible cases :

(i) Fp = Fyy = Fjy = F;3 = 0 at least one of F,,, F,; non-zero i.c. when the
field Fis is in x-direction only.

(iiy Fy = F3, = F,, = F,; = 0 at least one of F,,, F;; non-zero i.e. when the
field is in y-direction only.

(iti) Fyy = F,y = F,3 = F,3 = 0 at least one of F,,, F,, non-zero i.e. when the
field is in z-direction only.

Hence the electromagnetic field is non-null and consists of an electric
and/or magnetic field both of which are in the direction of same space axis, Without
"loss of generality we may consider only case (i) in which the fields are in the
x-direction. We write

2,A-% 4 F3; B-3C-2 = L2, ..(2.9)
The diagoal components of the eqn. (2.2) may be written as

2 A44 C44 A4C4 A4B4 Ai

R R - R B
=~ K[{—L? + (p + 3p)] ...(2.10)
2 T4 A B :
o T SR P SR { R R
(211)
2 TB
~ = [2a — —K[~L* + (o — p)] (2.12)
~ 2 [ B4C4] + 20 = —K[-L* + (o — p)] (213)

where the suffix 4 after the symbols 4, B, C stands for ordinary differentiation with
respect to time. It is evident from these equations that L2, p and p are each func-
tions of time alone, From eqns. (2.5) and (2.9) it follows that F,, is a constant
and F,, is a function of ¢ only i.e.

F,, =k, F,, = &+ A*L? — k2B-2C-)112 ...(2.19)
where k is a constant.

The case when there is no electric field i.e. when F;, = 0, we have J: = 0. Itis
the case considered by Roy and Prakash (1978). Here we assume that F;, % 0 and
find the only non-zero component of J¢ to be

1

B =k ppe L 1B — keBEC-pn, (2.15)
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Equation (2.15) shows that J¢ is space-like, unless L2 = fB-2C-2 where f is a constant
in which case J* = 0. The 4-current J¢ is in general the sum of the convection
current and the conduction current (Lichnerowicz 1967 and Greenberg 1971) :

Ji = eA* + A FY ...(2.16)

where ¢, is the rest charge density and { is the conductivity. In the case considered
here we have ¢, = 0 i.e. magnetohydrodynamics. Thus

C=— LI, e(2:17)

NI

where
1 = BC(L* — k2B-2(C-2)1/2,

The requirement of positive conductivity in (2.17) puts further restrictions on 4, B, C.
Hence in magnetohydrodynamic case metric potentials are restricted not only by the
field equations and energy conditions (Hawking and Penrose 1973) they are also
restricted by the requirement that the conductivity be positive for a realistic model.

Equations (2.10) - (2.13) are four equations in six unknowns 4, B, C, p, p and
L. For complete determinacy of this system of equations, we make two assump-
tions viz.,

(i) Fy, is such that
L2 = [?B—4C— .-(2.18)

where / is a constant.

(ii) The space time is Petrov type I degenerate (the degeneracy being in y and z
directions) which requires that

Cii = C}} with B#C. -..(2.19)
Thus from (2,19) we have

By Cu | 24, (C, B, ) -
oy Gy U (? -2 -o. (2.20)
Equations (2.12) and (2.13) yield

By _ Cu

3 = C -(2.2])

which on integration gives
B,C — BC, =k, -(2.22)

k, being an arbitrary constant.
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Further form (2.20) and (2.21) we get

éi(?_t_gt_ -0
4 \C BJ

Since B 7 C, eqn. (2.23) gives
A = N (a constant),
From eqns, (2.11), (2.12) and (2.24) we have

B,C,
BC

Putting B/C = « and BC = B, eqn, (2.22) reduces to

()=

and eqn. (2.25) turns into

Pl 5 )] =-aome

From eqns. (2.26) and (2.27) we have

&5 —_ 272
B+ = — KN2L%,

B—éé — —2KN2L?

which after the use of eqn. (2.18) goes to the from

2KN??
Bae = — ""ET“ :
Equation (2.29) on integration, gives
2KN2[?
(B = S + K

where k3 is an arbitrary constant.
From eqns. (2.26) and (2.30) we get
do k, dg

© Tk @+ R
where
2KN2]2
ki = e

Integration of eqn. (2.31) gives
w = kg [B 4 (B + K3)1 /2R lke

...(2.23)

. (2.29)

- (225)

...(2.26)

(227)

..(2.28)

...(2.29)

..(2.30)

.(231)

...(2.32)

(2.33)
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k, being a constant of integration. Therefore

B = kBB + (8% + kI)1/2]k1/ke ..(2.34)

and
cr — 75_ [8 + (8 + k3)L/2]k1/ke. -(2.35)
4

Hence the metric (2.1) can be written as

g
(dp/dr)?

which by use of eqns, (2.24), (2.30), (2.34) and (2.35) takes the form

d2—N2 d2 de
CENLTY T @ E TR

— kBB + (B + K3)12Jkalke dy

ds? = A2 - dx2] — Bidy* — C2dz® ...(2.36)

—fotp+ @+ ke dn (237)
The transformation |
Nx— X, ky— Y, k'z— Z g~ (T — k}) ...(2.38)
reduces (2.37) to the form
ast = VAT dxs — (7 — kAP T + (T — k3 rifases

— (T2 — k32 [T + (T2 — k§)r/2]-F*a/k2 dZ3 ...(2.39)
which can be further transformed to the metric
ds? = dT? — dX? — (T? — P12 [T 4 (T* — P2)i’le dy?
— (T% — P2)2[T + (T* — P2piz-e d72, ...(2.40)

This metric has no singularity and will be real only when 72 > P2,

3. SoME PHYSICAL FEATURES
(a) The Distribution in the Model
For the model (2.40) pressure p and density ¢ are given by

Kp = 7;_2(1*: Pz)—z _ 9 (Tz — P 4 §ﬁ (T2 — P32 + A

..(3.1)
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2 2
Kp = TT (T2 — PY) — ‘{T (T2 — P2yt 4 I_éiz(Tz — P2 — A

...(3.2)
The model has to satisfy the reality conditions (Ellis 1971)
@ e+p>0
) p+3p>0
which requires that
Pg% + 4KI*
2 T2 = 4T TN -.(3.3
Pr< T <1775 (3.3)
and
— 2 2 2 2
D> i Z(Tz P2)2 (1 — ¢*) T* + P*q* + 5KI]. .(3.9)
The condition (3.3) holds only when g% < 1.
In the case of disordered radiation (¢ = 3p) we have
-1 N
A = g — poy (1 — 4% T2+ Poq? 4 8KT7) (3.5)
and
— —_ l — 2 2 272 2
Ko = 3Kp = 8(TZ — Pt [5(1 — g?) T? + 5P%q% + 4KI?] ...(3.6)
and in the case of stiff matter (p = p)
—KI?
A= 2(T2 2 _ piy ...(3.D)
and
Kp = Kp = [4 (T2 — P22 — T (Tz — P2)—l] + 5 (Tz P2,
...(3.8)
The flow vector Af is given by
Al= A2 =22 =0, =1 ...(3.9)

The flow vector A satisfies Af, M = 0. Thus the lines of flow are geodesics. Tensor
of rotation W;; defined by

Wi = i — iz ...(3.10)

is identically zero. Thus the fluid filling the universe is non-rotational.
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The scalar of expansion ® = X, is given by

T
@ == (7"_;_—1)2)3—/2 ...(3.11)

which tends to zero when T — oo,
The components of the shear tensor defined by
i = 3 (Aiy + Asi) — 3 O(gis — Ais) ...(3.12)

are

Oy = 3—T (T* — P)3pe,

o = [T + (T* — Ple {—} [T(T* — P*)10 + g
+ §T(T? — P27y,
= [T + (T* — P e {— } [T(T* — PY — q]
+ $T(T* — P71},
o4 = 0; ...(3.13)
the other components of oy being zero.
The non-vanishing components of the conformal curvature tensor Cyehi are
Ci: =Cii =— 1Ci =~ § [3(T* — P32 — 3TXT* — P32
+ $g¥(T? — P21 — 1 T%T? — P?)-2], ...(3.14)
The non-vanishing component of the charge current 4-vector is given by
JY = [2T(T? — P*~2[I2 — k¥T? — P2)}1(2, (315
The conductivity is given by
{=IT(T* — P [I* — kXT* — P .(3.16)
For a physically realistic MHD model § has to be positive which requires that
0 < T < (k2P% + P02k,
(b) The Doppler Effect in the Model
The track of a light pulse in the model (2.40) is obtained by setting

ds? = 0 i.e.

(57) + @ — Pz 4 = — pyeer (1)

& (T2 — PRA [T 4 (T* — Pajiiz}e (df,) =1 .GID
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For the case when velocity is along z-axis, eqn. (3.17) gives

2 = £ (T PYRT L (T — Py

= 4 Y(T). ...(3.18)

Hence the light pulse leaving a particle at (0, 0, z) at time T, would arrive at a later
time 7, given by

T, z
J WT)dT = [ dZ. ..(3.19)
T, 0
Hence
az
‘pz(T) 3T2 = ‘I"J(T) STI + a‘f 8T,
= {,(T) 8T, + Uz3T, ...(3.20)

where (dZ/dT) = Uz is the z-component of the velocity of the particle at the time of
emission and ¢,(T) and {§,(7) are the values of (T) for T = T, and T = T, respec-
tively. From the above equation we get

_ f4(T) + Uz
3T, = {—_—*¢2(T) } 3T,. ...(3.2])

The proper time interval 379 between successive wave crests as measured by the local
observer moving with the source is given by

dX \? Y \2
ST? = {1 _ (d:;i) — (T — PY2 [T + (T — PJe (%)
— (T% — PR [T 4 (T? — P22}« (Z_Zf)z}”’ 37y. ...(3.22)

This can be written as
8TY = {1 — U1 3T, ...(3.23)

where U is the velocity of the source at the time of emission. Similarly we may write
3T = 3T, ...(3.24)

as the proper time interval between the reception of two successive wave crests by
an observer at rest at the origin. Hence following Tolman (1962), the red shift in
this case is given by
A+ _ T3
AT
(T3 — P1A [T, + (T3 — PO 4 Uz}

T __ pe2)-1/4 [T, T3 — P3)iiEperz | — Utz
{Tz — P4 [T +( ) Rl L } 325
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(c) Newtonian Analogue of Force in the Model

Here we study the effect of electromagnetic field in the force terms R; and S:
(Narlikar and Singh 1951). The vector R; and S; are defined as follows (Narlikar
and Singh 1951) :

Ri= A, = Hu/H ...(3.26)

Si = A:k gikgu

= gi*gup — Hu/H ..(3.27)

where

H= g
For the line element (2.40) we have

gn=-1 1

far = —(1 = PYRIT + (1" = PYOF Il} ...(3.28)

gos = —(T* — P2 [T + (T* — PAFe | ~

8 =1 J|
and

g =—1 1

g% = — (T* — Pyt [T o (T* — PYUYs L s

g% = — (T* — Py [T+ (T — PO |

g =1 JI

= —(T% — P?). .--(3.30)
The corresponding flat metric v,y is taken to be that of special relativity

ds? = dT? — dX* — dY?* — dZ2 «.(3.31)
Thus

vii = [—1, =1, =1, + 1] ...(3.32)
and

y=—1. ..(3.33)

From (3.30) and (3.33)
H = gy = (T? — Pn, «e(3.34)
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From (3.26) and (3.27) we get
Ry =1[0,0,0, I(T* — P)-] (3.35)
and

Si =1[0,0,0, — T(T? — P*)1]. ...(3.36)

Thus we find that Newtonian analogue of R; and S; both are null force vectors.
R, and S, have no Newtonian analogues.

In the absence of electromagnetic field the model is given by the metric

ds* = dT* — dX* — }2T)rt1 dY? — } 2T)-e+1 dZ2 ...(3.37)
for which the pressure p, and density §, are given by
1— ¢
Kpo = 4—]..2— + A ...(3.38)
1—¢
Kpg = a7t A. ...(3.39)

The reality conditions (Ellis 1971) require that

g —1
2 .
g2 <1 and A > 373 ...(3.40)

Therefore vectors R, and S; reduce to
1
R = [o, 0,0, T] (341)
and

o m— — - sea 3.42
S = 0, 0, 0, T ( )

The flow vector A’ satisfies /\fj A= 0. Thus the lines of flow are geodesics. The

tensor of rotation is identically zero. The scalar of expansion is given by

0= 1/T2 ...(3.43)
The non-zero components of the shear tensor are
1
u = 37

63 = }(2T)1 [-3T(1 + q) + 2] ...(3.44)

ogs = $(2T)* [-3T(1 — ¢9) + 2).

L..__v.._._.._)
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The red shift in the model is given by
[(2)e/2 T:a—l)/z 4 Uy

A+ 3
= ...(3:45)
A 12 pla-1)/2
[(2)e2 T, 1(1 — Uzyie
where
dZ
_ — = 2 (g—1)/2
Uz = 5 = (@ (T)
is the velocity at the time of emission.
The non-vanishing components of the conformal curvature tensor are
1 10 (22 — 1)
cii=ci=—icn=—g -7+ 2V eae

As T —> oo, shear, expansion and free gravitational fields vanish.

Thus the eclectromagnetic field gives positive contributions to expansion, shear
and free gravitational field which die out for large values of T at a slower rate than
the corresponding quantities in the absence of the electromagnetic field.
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APPENDIX

The non-vanishing components of the mixed Ricci tensor R; for the metric (2.1)

are given by

1 T4 AB, | A,C, A}
(Al) Ri:ATL'f‘,‘ -+ d—ﬁ
1 B B,C
2 .~ {44 et o
(A.2) R} =4 |3 T Be
1 C. , BC
3 _ & | L 1ty
(A.3) R = 4 i BC]
_ 1 Ase By, C44__A4C4_ /il.gé — _i]
(A4) R=F|Z2tTBTC ac a8 =
and
2 T4 i By C44 B,C,
(A.5) R=G |- +5 ¢t 35

The non-vanishing components of the Weyl conformal curvature tensor C;'; or

the metric (2.1) are given by

Cus 2A“ 4 24 2A2 _ 2B,C,

(A.6) Cit=Cii= C BC

L
64 | B
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2
(A7) Cli =Cit =5 [A“ + B T MG A4

_ Mk, 2G]

A C 2B 3A B Al
a8  cii=cii= o[y o Bu M A

3L, | BClY,
AC BC




