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FLOW INDUCED BY UNHARMONIC OSCILLATIONS OF A SOLID
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This paper deals with the flow induced by a solid sphere performing torsional
unharmonic oscillations in anunbounded, incompressible viscous fluid. It is
found that in the second approximation there exists a steady part of torque
which is absent in the harmonic case.

1. INTRODUCTION

Carrier and Di Prima (1956) studied the torsional harmonic oscillations of a
solid sphere in a viscous fluid taking into account the effect of centrifugal forces.
Miyagi and Nakahasi (1975) studied the traunslational unharmonic oscillations of a
circular cylinder in a viscous fluid and showed that the slow steady secondary flow
occurs outside the boundary layer around the cylinder due to the asymmetry in the
motion of circular cylinder.

In the present paper, we have discussed the motion of the fluid induced by the
torsional unharmonic oscillations of a solid sphere in an unbounded, incompressible
viscous fluid. Carrying out the first order approximation and then using it, the
second order approximation has been computed which also gives a steady part of
the motion. The velocity of the fluid in the vicinity of the sphere has been obtained
for calculating the torque on the sphere for large non-dimensional parameter a.
The results given by Carrier and Di Prima (1956) are obtained as a particular case.

2. EQUATION OF MOTION

We consider a sphere of radius R performing unharmenic torsional oscillations
with angular velocity ew(eist + ke?ist), e being a small non-dimensional parameter
governing the angular displacement in a viscous fluid of density p and kinematic
viscosity v. The motion is governed by

div.V =0 (2.1a)

aa—i/ -+ (;. grad) ;= — —:— grad p + vV? f/) ...(2.10)
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1t will be convenient to express as in Carrier and Di Prima (1956) that
- A » A
V = (rsin 0)"1 (Y sin 8)s e, — r=1(¥r)r eo + ves ..(2.2)

where e,, es and e¢ are the unit vectors in the spherical polar coordinate system
(r, 8, ¢) with pole at the centre of the sphere and axis along the axis of rotation.

Introducing the non-dimensional quantities

T=wtx=r/R'a2=pr—“)=@ )
i ’ 2,u, 2v

|
|
and ; (23)
vy = cwR[Fy(x, 0, T) + Fy(x, 0, T)] |
b = CwR? Gyx, 8, T). J

We can deduce from equs. (2.1) and (2.2), the following set of equations

2a2(F)r + L(Fy) = 0 (2.4
2a%(Go)r + L¥G,) = 2a*x72 {cot 8(F ) — x(F§)e} (2.5)
203 F)r + L(F)) = — 2a*(x? sin 8)7 {(xF)=(G,, sin 0)s
— (xGg)=(Fy sin 0)e} ...(2.6)
where
£y ==t [ e + 3 {500 . .27)

The boundary conditions are the no-slip condition on the sphere and the
vanishing of velocity at infinity. Thus, in terms of F, F; and G, we have

Fy(x, 8, T) = (e'T + ke*T) sin 9 ...(2.8)
Fi=Gy=(G)z=0atx=1 ...(2.9
Fy =G, =(Gy):=02as x> oo, ...(2.10)

3. FirsT ORDER APPROXIMATION

Boundary conditions suggest that we seek a solution of eqn. (2.4) of the form
Fy(x, 0, T) = [Fy(x) €T + kF;,(x)€*7] sin 8. ...(3.1)
Equation (2.4) provides
Ly(Fy) — 2°F, =0 ..(3.2)
Ly(Fog) — 22°Fpy = 0 (3.3
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where

L(f) = x {(x)se — 2x7Uf} W}

(3.9
z=(1+i)a. J
These equations have to be solved under the boundary conditions
Fopy=F,=1atx=1,F,, F,, > 0 as x - oo, ...(3.5)

The solution of eqn. (3.2) was obtained earlier by Carrier and Di Prima (1956). Now
solving eqn. (3.3) for F;, and combining this with F,;, we have from eqn. (3.1)

Fy(x,0,T) = [(Lll_—i:—l——z?;)z e-#(x-1) il

1k (1 + 2 zx)2 exp (—v/2 z(x — 1)) e2fT]sin6 ...(3.6)

I+ v22z)x

_ 1+ 2ax + 24°x2 )12 (1)
A + 2a + 2a) xt €

x sin 8 exp ((T — a(x — 1) + 1))

1 2 2 4 242Y) 1/2
Tk {El i 2\\52 Zx++4az[; );4)} exp (— /2 a(x — 1))

X sin 6 exp (JQT — v/2 a(x — 1) + 1) ..(3.7

where

a(x — 1) V2alx — 1)

n, = arc tan Tfataxt2an) ™= arc tan TrvV2a+ viax & 43

The tangential stress opposing the motion of the sphere is given by —puR(v/R),
evaluated at r = R. The torque N, on the sphere is —uR? sin 6(v/R), integrated
over the sphere. The first order approximation to the torque on the sphere can be
evaluated from expressions (3.7) for F, and is

bid
N, = —2nuew R® j 2 (-‘;2) sin® § dp

0x
0
8 [(84° + 324° - 64a* + 84a® + 724 + 36a + 9)'12
= — - mwpew R®
3 T L (I + 2a + 2a°)

x exp (T + n3)

(6408 + 128 /2 a8 + 256a* + 168 1/2 a® + 144a? + 36+/2 a + 9172
(I + 2v/2 4 + 49

x exp iQ2T + m):] ..‘.(3.8)

+k




952 N. K. AGARWAL

where
2a3(1 4 a)
(3 -+ 6a + 6a? -+ 2a3)

 aret 4a¥(1 + /2 a) .
My = Arclan ATTER A + 1282 + 4y/2 )

%, == arc tan

For large a, this reduces to

8 1
Ny = — TﬂpewR“ \/Za[(l + 7) exp (i(T + u3))

+k(v2+ ) e T + w0 | (3.9)
where

2
7 = arc tan (1 — %), 7, = arc tan (1 — %—)

4. CIRCULATORY MOTION
We can now express
(RIL.Fy)? = (F,, cos T + kFy, cos 2T)? sin® 6
= }(F3y + k2F3,) + F3ue87 + K2FjyetT
+ 2kF Foo(e'T + €%7)] sin® 6. .41
This suggests that we should seek solution of (2.5) as
Golx, 8, T) = [fo(®) + fi(%) €T + fo(x) T + fy(x) €¥7
-+ fi(x) €47} sin 26. ...(4.2)
Substituting the above in (2.5), we get the following differential equations for f;, f;,

fa, fsand f,
3@ + 6a’x 4 6a*x® 4 2a5x3
Li(f) =~ (I + 2a + 2a?) x°
k%(3a® 4+ 64/2 a3x + 12a%x2 -+ 44/2 ax3)
- (I 4+ 2v/2 a + 4a?) x*
L3(f)) — z2Ly(fy)
_ —ka?[6 4 (6v/2 4 6) zx + (6v2 + 3) 2°x® + (V2 + 2)28x7] -
- (1 + 2 + 4/22) x¢
X exp(—(/2 + Dzfx — 1)) ...(4.9)

—a¥(3 + 6zx + 4z2%x? + 23x3
1) — 2L, (f) = O EE L T ey (45)

e—26(z—1)

exp (—24/2a(x — 1)) -.(4.3)
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L3(fy) — 322Ly(fy)
_ —ka?[6 + (64/2 + 6) zx + (6+/2 + 3) 22x% + (/2 + 2) 23x9]
o 1+ 2 +4/22)x8
X exp(—=(v2 + 1) z(x — 1)) ...(4.6)

LE(fo) — 42°Ly(f)

_kZ 2 3 6 2 8 242 2 303 ‘
= a¥(3 + 2{ jsz Z)zza;e+ 2/2 z3x3) exp (—2v2z(x — 1)) ...(4.7)

where

Ly(f) = x 1 {(xf)ze — 6x7If}. ...(4.8)
These are to be solved under the boundary conditions

M=h=fi=fi=fi=0atx=1 )

homfimfimfomfi—Oat xrem |

Solutions of eqns. (4.3) to (4.7) satisfying the relevant boundary conditions are as
follows:

(4.9)

~ Ao B 1
o=t Y T N F 2 T 2
3a a? as at 2a5x .
el - . = - —2a{z—1)
{(2x3+ T 3x T3 3 )e
642520
I 4a x3e E(Zax)}
k2 3v2a | @ 248 22t
T 201 + 24/2 a + 4a?) ( 4x3 2x? 3x 3

_ 42 a5x) exp (—2v/2a(x—1)) + 136* ax*exp(2+/2a) E(2+/2 ax)}

3
...{4.10)
f1 == ;CA?I + (3'1"'37:_._____;_—22)‘2) e—z(u—l)Bl
ka? {[(svz — )+ (v2—1) 2
T 2T+ 2)( + v22) 2zx3

x exp)(—(v2 + D z(x — 1))

3 4 3zx + z%x?)
_( ;:x-“ ZX7) B(y/2 zx) exp (V2 2 — 2(x — 1))

n 3 - 322;;;— z2x?) E(2 + v/2) zx) exp[2 + v2) 2 + z(x — 1)]}
...(4.11)
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A 3 4 34/2 2z2x?
fr=le f CENZEAIND o (22 ~ 1) B,

_ a? 3 4 zx) e-22(s-1)
16(1 4 z)? zx®

B+ 3V2ax + 22 pa— 2y zx) exp [2 — v2) z — 2(x — 1))

24/2 zx3
+ 3 - 32\/\?225)(;; 222x2) EQ 4+ vV2)zx)exp (2 + 4/2)z — z(x — 1)]}
...(4.12)
£y = ;_:?3 n 3+ 3\/3x23x + 322x?) exp (— /3 20 — 1)) B,
> — 2
“HE z)kﬁ ¥ {(6‘/2 DF V2 p (~(v2 + D2t — 1)

_+ '\\//3322"; 25 B + /2 — /3) 2%)

X exp [(1 + v/2 — 4/3)z — /3 z(x — 1)]

1_,\/3 + 242 ,
+ Em T B+ v2 4 v )

x exp (1 + v/2 + v/3) 7 + /32(x — 1)]} (4.13)

A 3+6 422x?
fo=to  BREXTID p (~200x — 1)) B,

kia? 3v/2 + 2zx
7321 + y22z) {( x5 ) exp (—24/2 z(x — 1))

~CAEXE D B(2y2 — 2) 20) exp [2V2 — D)z — 22(x — 1)

2zx3
3—6 472x2
+ C= S I By + 2 20 e (V2 + D7 4 2ala — 1)1}
...(4.14)
where
[+ o]
B = I T - . (415)
X
and
= az 2i —_ 2a2 E — 8{14 2a
Ao——16(1+2a+2a2){1+3 3t 3 5 e E(Za)}_.

(equation continued on.p. 955)
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k?a? 2/2a 4@ | 8y/2aP
- 16(1+2\/2a+4a2){ T3 T3t T3
— 3-2334 exp (24/2 a) E2y/2 a)} .(4.16)
a 7(1 2 2a
By = o 55 T2 {3 + e — @ 20t — dae E(2a)}
k2a 342 Ta .
T 401 + 2v/2 a + 4a?) {T t 7 Ve - 2@
4 44/2 at — 1665 exp (24/2a) E(24/2 a)} (4.17)
B ka? B (5+/2 — 10) _
M= s aTors (6ve =9+ O 21002,
- % + 222E((2 + v/2) 2) exp ((2 + V2) z)} ...(4.18)
ka® 1
B, = AT 280+ V222 {1 + 5 - (1 + 2) E(+/2 2) exp (/2 2)
U= DEQ@ + VI e (@ +v2)2) (4.19)
. a® 3v2 3
A== BT T (0 + v22) {1+z_ - W2-22
— ZE(2 + 1/2) z)} ..(4.20)
@ 1 (14422
= qi 7270 F V222 {‘ Tt T o ayr EC-vDo)
x e (@— VD2 + S EQ+ VDD w2+ v2a)}
.(4.21)
ka?
A= F 90T v29d + V32 {“2 +6v2 —5v6)
L (Ve + 12;/3—5\/2) Lz 4;27\/2) @ V2 vz
— 222E((1 + v/2 + vI) D) exp((1 + v2 + 1/3)2)} {4.22)
ka® (124 7v2)
B’=18(1+z)(1+\/22)(1+\/32)z{(2+\/2)+ z

(equation continued on p. 956)
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_a +\/\3/3 Z)E((l 4+ A2 — 4/3)z)exp((l + v/2 —4/3)2)
+ (l\/__.,.}/iz)E((l + V2 + /3 2)exp((l + V2 + V/3) z)}
..(4.23)
k2a? (3v2 — 6) 3
=T rv2erd + 2 {5* T 7

— (V2 — 2) z — 422E((2/2 + 2) 2) exp ((2/2 + 2) z)} .(4.24)

fea® 2 _u+2) 22)
Bi= i tv2era 202 {“ V2t = E@Qv2-2)2)

(1—22

X exp (2v2 — 2)2) + E(2v/2+2)2)exp(2v/2+2) D).

...(4.25)

As the sphere performs aharmonic oscillations, the fluid sucked in along the
axis of oscillation is thrown away along the equatorial plane of the sphere. The
steady part of velocity in 8-direction is given by

Rsin 26 4
V= T (). ..(4.26)

X

. d , . .
Since g (xfy) vanishes at x = 1 and x = oo only, v is one signed. The amount

of the fluid which flows across the surface of a cone of apex angle 6 is the measure of
the fluid sucked in along the axis of oscillation. It is given by

[+ 0]
= [ 2rrsin 6y dr
(4]

_ mefwR%? sin 0 sin 20 [3 -+ 24 — 20® + 4a® — 8a*e?E(2qa)
T 8 3(1 + 2a + 2a?)
K (3 + 24/2 a — 4a% + 84/2 a®) — 32a% exp (24/2 a) E(2+/2 a)
3(1 4 24/2 a + 4a?)

...(4.27)
We obtain the approximation for large @
2wR? sin 0 sin 26 k2 2 4 (k%212
0 = I slug sin (1+7)_( +(a ))+0(1/a2)]-
...(4.28)

5. SECOND ORDER APPROXIMATION
Substituting for F, and G, in eqn. (2.6), we obtain



FLOW INDUCED BY UNHARMONIC OSCILLATIONS OF A SOLID SPHERE 957
2a(F)r + L(F) = [Ho Ry(6) + Hy3Ry(0)]
+ [HR((8) + HygRy(0)] €7 4- ...... + L+
+ [Hg; Ri(8) + HyzRy(0)] €8T ..(5.1)

where Ru(f) represents the derivative of Legendre’s polynomials Py (cos 8) and

Ho = 22 (3)e For + Funde fi + K(xf)e Fo + KGFa il -.52)

8a2
Hys = 553 [200A)e For — 3(xFo)s fy + 2K(xfy)a Foy — 3k(xFop)s fi]

...(5.3)
A2
Hyy = 5 200 Foy + 205Fon)s fy + K(h)s Fop + K(xFon)s fy
+ (2)z Foy + (xFg)s fo + k(xfo)a Foy + k(xFyy)s £] ...(5.4)

8a?
Hy; = 52 [4(xfo)x Foy — 6(xFy1)s fy + 2k(xf)): Foo — 3k(xFy5)z fy

+ 2(xfy)s For — 3(xFy1)z fo + 2k(xf3): Fos — 3k(xFy,): f3]- ..(5.5)

Equation (5.1) suggests that we should seek a solution of F, of the form

Fi(x,0,T) = [Po1Ri(0) + posR(®)] + [p1Ri(8) + PisRs(8)] €T + ...

(5.6)

Substituting in (5.1), we get
(XPg1)ez — 2x71pg; = —xHy, (5.7
(XPog)az — 12x71pyy = —xHyy ..(5.8)

and similar equations for other unknowns.

It is interesting to note that F, involves a steady part also which gives rise to
a steady torque and we turn our attention to its determination through the solution of
eqns. (5.7) and (5.8). The functions H, and Hys occurring in (5.7) and (5.8) are
extremely complicated functions involving several products of different exponentials
and polynomials in [/x as well as exponential integrals, To get the exact solutions,
as such, of these equations is a laborious task. Therefore as in Carrier and Di Prima
(1956), we shall confine ourselves to large a case. For calculating the torque, the
velocities in the vicinity of the sphere are needed. Therefore, we take x = 1 4 £fa
and neglecting the terms of (1/a2%), eqns. (5.7) and (5.8) reduce respectively to the form

ggiz (xpo) = k (1, + '—Zi + ’Z—E) i exp(-—-st’z—g)b ...(3.9)

J=1
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and

m,

Ez (xPoa) =k (1 + — + ~) z exp(— —) .e(5.10)

where Iy, my, my, I, m] and n'j are known complex quantities independent of a and £,
The 8; are z, 4/2 z, 2z, 24/2 z and (2 + +/2) z respectively.

Integrating the above equation and applying the relevent boundary conditions,

we obtain
Por = (c; + 44 eﬁ) [ z exp( )] (5.11)
Pos = ( ) [1 + z exp (— 8"75)] - (5.12)

where ¢y, c , es and e are known real and dj, d are known complex quantities in-

dependent of @ and f.

However, in calculating the torque N,, p,; does not contribute to it because of
the orthogonality relation in the Legendre’s polynomials. Thus evaluating

d
Ix (Poy/x) at x =1

we obtain

ki3
N, = —2repwR® j 53; (%‘E) sin?  db
=1
0

= —(5.688) meupwkR3, ...(5.13)

The expression (5.13) shows that N, linearly increases as k increases. Letting k = 0
it should be noticed that N, vanishes and for eqn. (3.9), we recover the value of N, for
harmonic oscillations as given in Carrier and Di Prima (1956).
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