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Eulerian matroids have been discussed by Welsh!. In this paper we prove that a
binary matroid is eulerian if and only if the number of independent sets is odd.

1. INTRODUCTION

A matroid M = (S, F) consists of a finite set S and a collection ¥ of subsets
of S with the following properties :

(D) o€ 7.
(2 If XE F and YCX then YE 7.

(3) If XE F and YE F and | X | > | Y | then there exists an element
x€X-Ysuch that Y U {x} € T.

Members of ¥ are called the independent sets of M. A maximal independent set
of M is a base of M. A subset of S not belonging to ¥ is said to be dependent. A
minimal dependent subset of S is called a circuit of M. We follow the notations and
terminologies of Welsh? and Recski’. '

A matroid M is called eulerian if S is a union of disjoint circuits of M. Two
matroids M; and M, on.S; and S, respectively are said to be isomorphic if there
exists a bijection ¢ : §; — §, which preserves independence. Let F be a field. We
say that a matroid M on a set S is representable over F if there exists a vector
space V over F, a subset T of V and a bijective map ¢ : S — T such that under ¢,
M is isomorphic to the matroid M induced on T by linear independence in V. A
matroid M on § is called binary if it is representable over the Galois field GF(2).
Here we give a characterization of binary eulerian matroids in terms of independent
sets.

We need the following definitions and results.

If M = (S, F) is a matroid and x € S then the deletion of x from M (or restriction
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of M to-S-{x}) denoted by M, is a matroid (S-{x}, F') where a subset Y of S-{x}
is in ¥ if and only if and only if YE ¥. If x is not a loop, then a contraction of
x in M denoted by My,, is the matroid (S-{x}, F') where a subset Y of S-{x} is in
F' if and only if Y U {x} was independent before contraction. Matroids so obtained
from M are known as minors of M.

Lemma | (Welsh?, p. 162) — Any minor of a binary matroid is binary.

Lemma 2 (Welsh?, p. 167) — Let M be a binary matroid on a set §, let
xE€S and let C be a circuit of M with x&C. Then C-{x} is a circuit of M,y,. If

x & C then either C is a circuit of My, or is the disjoint union of two circuits of
M/{X}'

2. MAIN RESULT

Theorem — A binary matroid M on a set § is eulerian if and only if the number
of independent sets of M is odd.

The above does not hold good for non-binary matroids as shown by the following
example.

Example — Let U , be a uniform matroid of rank 2 on a six element set. This
is a non-binary eulerian matroid. Then the number of independent sets in Us , is 22,
an even number. On the other hand the number of independent sets in U, , is 11,
an odd number but U, , is not eulerian.

In general let U, ; be the uniform matroid of rank 2 on a k-element set (this
is nonbinary for k > 3). One can see that it is eulerian if and onmly if k is congruent
to 0 (Mod 3) and the number of its independent sets is odd if and only if & is
congruent to 0 or 3 (Mod 4). Since 3 and 4 are relatively prime numbers any
combination of the two properties can arise.

PROOF OF THE THEOREM : Let M = (S, ¥) be a binary matroid. Let vy), be the
number of independent sets of M and yy (x) be the corresponding number of
independent sets- of M containing x. Since a loop is a dependent set of M, we can
assume without loss of generality that M is loopless. We proceed by induction on
| S} If|S|=2and M is eulerian then a base of M consists of a singleton subset
of § and hence trivially the number of independent sets of M is odd.

Let now | S | > 2 and x be an arbitrary element of S. Form the matroids M),
by contracting x in M and M, by deleting x from M. By Lemma 1 both M/, and
" My are binary matroids.

The independent sets of M are divided into two classes. The first class consists
of the independent sets that include x and the second class those not containing x.
An independent set in the first class, say X corresponds to the independent set X' =
X - {x} of M), and an independent set X' of M, corresponds to the independent

set X=x U {x} of M in the first class. Also we note the one-one correspondence

between independent sets of M containing x and independent sets of M. So by
induction,
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Y=Tu = Yy (x) o (D)

with ym 1 (Mod 2) if and only if M, is eulerian -2

Further, if Y is an independent set of M in the second class, then Y is an independent
set of M,;,,. So, we conclude from the above that

'YM"YM,{,} + YM\{X}- . 3

Therefore if M is eulerian then by Lemma 2, M, is culerian. However M,,, is not
culerian. By induction and by (2) and (3)

Iwm1+0=1(Mod 2);

ie. v 1 Mod 2).
This proves the only if part.

For the if part assume that M = (S, ¥) is not an eulerian matroid. If for some
x €S neither of M, and M, is eulerian then by induction and by (2) and (3) we
have

=0+ 0 =0 (Mod 2).
If however, M(,; is eulerian then by Lemma 2, M, is eulerian. Similarly, if

M, is eulerian then M\, is eulerian. Thus, if one of M, and M, is eulerian
then both are eulerian.

Consequently,
yy= 1l +1=0 (Mod ?2)

ie. Y= 0 (Mod 2) if M is not eulerian.

This completes the proof of the theorem.

ACKNOWLEDGEMENT

The authors are thankful to the referee for his careful reading of the manuscript
and many helpful suggestions.

REFERENCES

1. D. J. A Welsh, J. Comb. Theory 6 (1969), 375-77.
2. D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.
3. Andras Recski, Matroid Theory and its Applications, Springer-Verlag, Berlin, 1989.






