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In this paper we introduce generalized locally closed sets and different notions of
generalizations of continuous maps in a topological space and discuss some of their
properties.

1. INTRODUCTION

According to Bourbaki! a subset of a topological space is locally closed if it is
the intersection of an open set and a closed set. Stone® has used the term FG for
a locally closed subset. By using the concept of a locally closed set Ganster and
Reilly? introduced LC-irresoluteness, LC-continuity and sub-LC-continuity and
discussed some properties of these functions. We introduce and investigate the
concept of "generalized locally closed set" in section 2 and the classes of
GLC-irresolute maps and GLC-continuous maps in section 3.

2. GENERALIZED LocALLY CLOSED SETS

Throughout this paper, (X, t) denotes a topological space with a topology T on
which no separation axioms are assumed unless explicitly stated and, for a subset A
of X, Cl (A) and Int (A) denote the closure of A and the interior of A with respect
to (X, 1) respectively. Let P(X) be the power set of X. Before entering into our work
we recall the following definitions.

Definition 2.1 — A subset S of (X, 1) is called g-closed* if CI (S) C G whenever
SC G and G is open in (X, T). A subset S of (X, 1) is called g-open if its complement
X - S is gclosed.
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Remark 2.2* : It has been proved that closed set implies g-closed set, g-closed
set need not imply closed set, open set implies g-open set and g-open set need not
imply open set.

Definition 2.3 — A subset S of (X, 1) is called locally closed! if § = G [\ F
where GE 1 and F is closed in (X, T).

Remark 2.4 : The following are well known.

(i) A subset S of (X, T) is locally closed if and only if its complement
X — S is the union of an open set and a closed set.

(i) Every open (resp. closed) subset of X is locally closed.
(iif) The complement of a locally closed set need not be locally closed.
Now we introduce the following.
Definition 2.5 — A subset S of (X, 1) is called generalized locally closed set
(briefly, glc) if S = G (\F where G is g-open in (X, 1) and F is g-closed in
(X, ©). Every g-closed set (resp. g-open set) is glc.

The collection of all generalized locally closed sets (resp. locally closed sets) of -
(X, T) will be denoted by

GLC(X, 1) (resp. LC(X, ©) (Bourbaki!, p.19).

The following two coliections of subsets of (X, t), i.e. GLC*(X, 1) and
GLC**(X, T), are defined as follows :

Definition 2.6 — For a subset S of (X, 1), SEGLC* (X, 1) if there exist a
g-open set G and a closed set F of (X, t), respectively, such that S = G (N F.

Definition 2.7 — For a subset S of (X, 1), SE GLC** (X, t) if there exist an
open set G and a g-closed set F of (X, t), respectively, such that S = G [} F.

Proposition 2.8 — Let § be a subset of (X, 7).

(i) If § is locally closed, then SEGLC* (X, t) and SE€GLC** (X, ),
however not conversely.
(ii) If SEGLC* (X, ) or SEGLC** (X, 1), then § is glc.

PROOF : The proofs are obvious from Remark 2.2, definitions and the following
Example : ’

Example 29 — Let X = {a, b, ¢} and T = {¢, {a}, X}. Then LCX, 1) =
{¢, {a}, {b, ¢}, X} and GLC*( X, 1) = GLC** (X, ©) = GLC(X, t) = P(X) because
o, X, {b}, {c}, {a, b}, {a, ¢} and {b, c} are the g-closed sets of (X, t). Then,
LC (X, T) is a proper subset of GLC(X, ).

The following result is a characterization of GLC*(X, 1) (cf. Ganster and Reilly?,
Proposition 1).

Theorem 2.10 — For a subset S of (X, t), the following are equivalent :

i) SeGLC* (X, 1.

(i) S§ = P[)CKS) for some g-open set P.
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(iii) CI(S) - S is g-closed.
V) s U @x-cKs) is g-open.

PROOF : (i) = (ii) There exist a g-open set P and a closed set F such that §
= P()F. Since SCP and S CCKS), S CP () CIS). Conversely, since CS) CF

we have S = P(YFDP () CIS). Therefore we have S = P () CKS).

(ii) = (i) Since P is g-open and CIS) is closed, P () CKS) € GLC* (X, 1) by
Definition 2.6.

(ii) = (iii) : It follows from assumption and Corollary 2.7 of Levine* that CI(S)
- S =ClS) M (X-P) is g-closed. )

(iii) = (i) : Let U = X - (Cl(3’) - S). By assumption, U is g-open and § =
U () CKS) holds.

(iiiy = (iv) : Let F = CI(S) — S. Then, § U X - CI(S)) is g-open, since X —
F =5 |J@-CIS)) holds and X — F is g-open.

(iv) = (iii) Let U = § |UJ (X~ CKS)). Then, X — U is g-closed and X - U =
CKS) - S holds. It completes the proof.

Remark 2.11 : As can be seen from Example 2.9 above, it is not true that
§ €GLC* (X, ©) if and only if S ClInt(S\UJ (X-CKS))) (cf. Ganster and Reilly?
Proposition 1(v)).

In fact, let § = {a, b} in the topological space (X, t) of Example 2.9. Then,
Int(S U (X—CKS))) =Int ({a, b}) = {a} D S and S EGLC* (X, 7).

We need the following definition to get a corollary to this theorem (cf. Ganster
and Reilly?, Corollary 1(v)).

Definition. 2.12 — A topological space (X, 1) is called g-submaximal if every
dense subset is g-open.

Corollary 2.13 — A topological space (X, T) is g-submaximal if and only if
PX) = GLC*(X, 1) holds.

PROOF : Necessity — Let SEP(X) and let U = § U (X~ CKS)). Then, it is
easily verified that X = Ci(U), i.e. U is a dense subset of (X, t). By assumption, U
is g-open. Therefore, it follows from Theorem 2.10 that § € GLC* (X, T), and hence
P(X) = GLC*(X, 1) holds.

Sufficiency — Let S be a dense subset of (X, t). Then, it follows from
assumptions and Theorem 2.10(iv) that S |J (X - CKS)) =S holds, S € GLC* (X, )
and S is g-open. This implies (X, t) is g-submaximal.

Remark 2.14 : 1t follows from definitions that if (X, t) is submaximal then it is

g-submaximal. As can be seen from Example 2.9 above, its converse is not true.
The topological space (X, t) of Example 2.9 is g-submaximal since P(X) = GLC*
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(X, T) holds. However, (X, T) is not submaximal since LC(X, 1) = P(X), (cf. Ganster
and Reilly?, Corollary 1).

Proposition 2.15 — For a subset S of (X, t), if SE GLC** (X, 1) then there
exists an open set P such that S = P () CI* (S) (here CI*(S) is the closure of S
defined by Dunham?).

PROOF : There exist an open set P and a g-closed set F such that S =
P[)F. Since SCP and SCCI* (S) we have SCP()CI* (5). Conversely,
since CI* (S) CF (=Cl* (F)) holds we have S=P{)FDP(\Cix(S) and hence
S =P(\CI (5

The following results are basic properties of "generalized locally closed sets" (cf.
Ganster and Reilly3, Propositions 3, 4, 5 and Theorem 1).

Proposition 2.16 — Let A and B be subsets of (X, T).

() 1f A€GLC* (X, 1) and BEGLC* (X, 1) then A (B € GLC* (X, ).
() Jf A€GLC** (X, 1) and B is closed or open then A (1) BE GLC**
&, 1) ,
(i) ¥ AeGLC (X, t) and B is g-open or closed then A {) B € GLC(X, 1).
PROOF : (i) It follows from Theorem 2.10 (ii) that there exist g-open sets P and
Q such that A = P\ CI(A) and B=Q () CKB). Then, A (Y BE GLC* (X, t) since
P () Q is g-open by Theorem 2.4 of Levine* and CI(A) () CI(B) is closed.

(ii) It follows from Definition 2.7 that there exist an open set G and g-closed
set F such that A () B=G () F () B. First suppose that B is open. Then,

it is shown that A () BE GLC** (X, 1). Next suppose that B is closed.
By using Corollary 2.7 of Levine* it is proved that F () B is g-closed
and so A [\ BEGLC** (X, 7).

(iii) It follows from Definition 2.5 that there exist a g-open set G and g-closed
set F such that A(\B=G () F () B. First suppose that B is g-open.

Then, by using Theorem 2.4 of Levine?, it is shown that A ()| B € GLC**
(X, 7). Next suppose that B is closed. By using Corollary 2.7 of Levine?,
it is proved that F () B is g-closed and so A )\ BEGLC (X, 1).

Proposition 2.17 — Let A and Z be subsets of (X, t) and let ACZ.
(i) If Z is g-open in (X, ©) and A €E GLC* (Z, t | Z), then AEGLC* (X, ).
(i) If Zis g-closed in (X, t) and A EGLC** (Z, t | Z), then A€ GLC**
& . ‘
(iii) If Z is g-closed and g-open in (X, T) and AEGLC(Z, t | Z), then
AEGLC (X, T).
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PROOF : (i) It follows from Theorem 2.10 that there exists a g-open set G of

(Z, T | Z) such that A = G (") Clz(A), where Cl; (A)=Z () Cl(A). By using Theorem

4.6 of Levine* and Definition 2.6, it is proved that A =(Z (") G) () Cl(A) € GLC*
&, ). .

(ii) There exists an open set G of (Z, t | Z) and g-closed set F of (Z, T |

Z) such that A = G () F. By Theorem 2.6 of Levine* F is g-closed in

(X, 7). Since G = B[ )Z for some open set B of (X, 1), A =
(ZB)(F=F (B holds we have A € GLC** (X, 7).

(iii) There exist a g-open set G of (Z, t |Z) and a g-closed set F of
(Z, t | Z) such that A = G F. By'using Theorems 2.6 and 4.6 of
Levine*, it is proved that A € GLC (X, 7).

Remark 2.18 : The following example shows that one of the assumptions of
Proposition 2.17(i), i.e. Z is g-open, cannot be removed.

 Example 2.19 — Let X = {a, b, ¢} and T = {¢, {a}, {a, b}, X}. Let ¥ denote
the collection of all g-open sets of (X, T).

Then we have V = {¢, {a}, {b}, {a, b}, X}. Put Z=A-= {a, c}. 1t is shown that
Z is not g-open and A EGLC* (Z, 1 | Z).
However, A € GLC* (X, 1) since GLC* (X, 1) = P(X) — {{a, c}}.

Proposition 2.20 — Suppose that the collection of all g-open sets of (X, 1) is
closed under finite unions. Let A € GLC* (X, t) and BEGLC* (X, 1). If A-and B
are separated. i.e. A( ) CI(B)=¢ and B () CKA)=¢, then A|J B€EGLC* (X, 1).

PROOF : By using Theorem 2.10 there exists g-open sets G and S of (X, T) such
that A = G()YCIA) and B=S[\CKB). Put U=G()(X-CIB)) and
V=S (X-ClA)). Then, A=U(\ClA) and B=V()C(B) hold, and
U CI(B)=¢ and V) CKA) = ¢ hold. It follows from Theroem 2.4 of Levine* that
U and V  are g-open sets of (X, t). Therefore, since
AUB=UUJUVYN(CKAUB)) and U|JV is g-open by assumption, we have
A|UBEGLC* (X, 1).

Remark 221 : Example 2.19 shows that one of assumptions of Proposition 2.20,
i.e. A and B are separated, cannot be remoyed. vV is closed under finite unions, and
{a} EGLC*(X, ) and {c} € GLC*(X, ©). However, {a} and {c} are not separated
and {a, ¢} € GLC* (X, 7).

Proposition 2.22 — Let {Z;]i€ A} be a finite g-closed cover of (X, T), Le.
X = U {Z|i€A}, and let A be a subset of (X, ). If A M Z,EGLC** (Z,,|Z)
for each i€ A, then A € GLC**(X, ).
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PROOF : For each i € A there exist an open set U; €1 and a g-closed set F; of
(Z,7|Z) such that A Z;=U, (N (Z(\F). Then, A = U {ANZ]|iEA} =
(U (u)lieay] N[U {ZNF;|i€A}], and hence AEGLC** (X, t) by
Theorems 2.6 and 2.4 of Levine*

Proposition 2.23 — Let (X, t) and (Y, o) be topological spaces.

(i) If AEGLC(X,t) and BE GLC(Y, 0), then A x BEGLC X x Y, tx 0).

() 1f A €GLC*®X, 1) and BEGLE(Y,0), then AxBEGLC
X xY,Txo0).

(i) 1f A €GLC** (X,t) and B € GLC** (Y, 0), then A x B € GLC**
XxY,1x0).

PROOF : (i) There exist g-open séts G and G’ of (X, t) and (¥, O), respectively,
and g-closed sets S and $° of (X, t) and (Y, 0), respectively, such that A =

GMNSand B=G' (\S. Then, AxB=(GxG')[(SxS) holds and hence
AxBEGLC(XxY,tx0o) by Theorems 7.1 and 7.3 of Levine*.
(i) & (iii) The proofs are similar to (i).

3. GLC-FUNCTIONS AND SOME OF THEIR PROPERTIES

Let f: (X, ty = (Y,0) be a function between topological spaces (X, T) and
(Y, o). Ganster and Reilly? defined three distinct notions of LC-continuity, i.e.
LC-irresoluteness, LC-continuity and sub-LC-continuity. In this section we define
generalizations of LC-irresolute functions, LC-continuous functions and
sub-LC-continuous functions and study some of their properties.

Definition 3.1 — A function f : (X, ©) — (Y, 0) is called GLC-irresolute (resp.
GLC*-irresolute, resp. GLC**-irresolute) if f1(V)EGLC(X, 1) (resp. fH(V)E
GLC* (X, 1), resp. f! (V)€ GLC** (X, 1)) for each VE GLC(Y, o) (resp. VE GLC*
(Y, 0), resp. VE GLC** (Y, o).

Definition 3.2 — A function f : (X, t) — (Y, 0) is called GLC-continuous (resp.
GLC*-continuous, resp. GLC**-continuous) if f1(V)EGLC(X,t) (resp. f1(V)E
GLC* (X, 1), resp. f1 (V)€ GLC** (X, 7)) for each VEO.

Proposition 3.3 — Let f : (X, 1) — (Y, o) be a function.

(i) I fis LC-continuous, then it is GLC*-continuous and GLC**-continuous.
(ii) If fis GLC*-continuous or GLC**-continuous, then it is GLC-continuous.

(ili) If f is GLC-irresolute (resp. GLC*-irresolute, resp. GLC**-irresolute), then

it is GLC-continuous (resp. GLC*-continuous, resp. GLC**-continuous).

(iv) If fis continuous and closed, then f is GLC*-irresolute, GLC**-irresolute

and GLC-irresolute.

PROOF : (i) Suppose that f is LC-continuous. Let V be an open set of (Y, o).

Then f! (V) is locally closed in (X, t) by definition. By Proposition 2.8 it is obtained
that f is GLC*-continuous and GLC**-continuous.
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(ii) & (iii) The proofs are obvious from definitions.
(iv) It is proved by Theorem 6.3 of Levine* and definitions.

Remark 3.4 : Converses of Proposition 3.3 need not be true as seen from the
following examples.

Example 3.5 — let X =Y = {a, b, ¢}, T = {¢, {a}, X} and o=P(Y). Let f :
(X, 1) = (Y, 0) be the identity. Since GLC*(X, 1) = GLC**(X, 1) = GLC(X, 1) =
PX), LCX, ©) = {¢. {a}, {b, ¢}, X} and LC(Y, 0) = GLC(Y, o)=GLC* (Y, 0)
= GLC** (Y, 0)=P(Y), f is not LC-continuous; it is GLC*-continuous, GLC**-conti-
nuous and GLC*-irresolute.

Example 3.6 — Let X = Y = {a, b, ¢}, T = {¢, {a}, {a, b}, X} and o = {¢,
{a}, Y}. Let f: (X, T) — (Y, 0) be a function defined by fla) = c) = a and fib)
= b. Then, GLC** (X, 1) = GLC(X, ©) = P(X), LC(X, ©) = GLC* (X, 1) = P(X) -
{{a, c¢}} and GLC(Y, o) = GLC**(Y, o) = GLC*(Y, o) = P(Y).

Therefore, f is not GLC*-continuous; but it is GLC-continuous.

Example 3.7 — The function of Example 3.6 is not GLC*-continuous; but it is
GLC**-continuous.

Example 38 — Let X = Y = {a, b, ¢}, T = {¢, {a}, {a, b}, X} and 0 = {¢,
{a}, Y}. Let f: (X, vy — (Y,0) be the identity function. Then, f is not
GLC*-irresolute; but it is LC-continuous.

From Proposition 3.3 and Examples 3.4-3.8, we have the following diagram :

/‘;( GLC *-irrls‘iéoluteness

LC-continuity (_‘_B GLC*-continuity
\ GLC**-continuity

where A — B (resp. A + B) represents that A implies B (resp. A does not always
imply B).

W

GLC-continuity

The following result is an immediate consequence of Corollary 2.13 (cf. Ganster
and Reilly3, Proposition 6).

Proposition 3.9 — A topological space (X, 1) is g-submaximal if and only if
every function having (X, t) as its domain is GLC*-continuous.

PROOF : Necessity — Suppose that f : (X, t) — (¥, 0) is a function. By Corollary
2.13 we have that f1(V)EGLC* (X,1) = P(X) for each open set V of (¥, 0).
Therefore, f is GLC*-continuous.

Sufficiency — Let Y = {0, 1} be the Sierpinski space® with topology o = {¢,
{0}, Y}. Let V be a subset of (X, T) and f : (X, T) = (Y, 0) a function defned by
fix) = 0 for every xEV and fix) = 1 for every x& V. It follows from assumption

that f is GLC*-continuous and hence f({0}) = V € GLC* (X, x). Therefore we have
PX) = GLC* (X, t) and so (X, 1) is g-submaximal by Corollary 2.13.
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Proposition 3.10 — If f : (X, T) — (Y, 0) is GLC**-continuous and a subset B
is closed in (X, T), then the restriction of fto B, say f | B : (B, t | B) = (Y,0) is
GLC**-continuous.

PROOF : Let V be an open set of (¥, o). Then, f1(V)=G () F for some open
set GEt and g-closed set F of (X, t). By using Corollary 2.7 and Theorem 2.9 of
Levine!, we have that (f|B)!(V)=(G (\B)(\ (F(\B) €GLC** (B,t|B). This
implies that f | B is GLC**-continuous.

We recall the definition of the combination of two functions. Let X = A{J B
and f: A =Y and h : B —Y be two functions. We say that f and h are compatible
if fIAYB=h|A[) B. Then, we can define a function fVh:X—Y as follows :

(fVh)(x)=fx) for every xEA and (fV h)(x)=h(x) for every xEB. The
function fVh:X —Y is called the combination of f and A.

Theorem 3.11 — Let X = A\ B, where A and B are g-closed sets of (X, 1),

and f:(A,t|A) = (Y,0) and k : (B, t | B) — (¥, 0) be compatible functions. If f
and h are GLC**-continuous (resp. GLC**-irresolute), then fV h: (X, T) = (Y, 0) is
GLC**-continuous (resp. GLC**-irresolute).

PROOF : Let VE o (resp. V& GLC** (Y, d)). Then, (fV Ay (V) (A =f' (V) and
(VAT (V)(YB=h1(V) hold. By assumptions we have (fVA(V)[A
€ GLC** (A,t]|A) and (fV A1 (V) BEGLC** (B,t|B). Therefore, it follows
from Proposition 2.22 that (fV k)1 (V) € GLC** (X, <) and hence fVh is GLC**-
continuous (resp. GLC**-irresolute).

Remark 3.12 : Example 3.6 shows that the pasting lemma for GLC*-continuous
functions is not true. Let (X, t),(Y,0) and f : (X, ©) — (¥, 0) be the topological
spaces and the function in Example 3.6. Let A = {a, ¢} and B = {b, c}. Then {A,
B} is a g-closed cover of X, and f | A : (A, t{A)—=(Y,0) and g | B : (B,
t|B)— (Y,0) are GLC*-continuous functions. However, the combination
(flA) V (g|B) =f is not GLC*-continuous.

Concerning compositions of functions we have the following :

(a) The composition of two GLC-irresolute (resp. GLC*-irresolute, resp.
GLC**-irresolute) functions is clearly GLC-irresolute (resp. GLC*-irresolute, resp.
GLC**-irresolute).

(b) The composition gof of a GLC-continuous (resp. GLC*-continuous, resp.
GLC**-continuous) function f and a continuous function g is clearly GLC-continuous
(resp. GLC*-continuous, resp. GLC**-continuous).

In the end of this section we generalize the notion of sub-LC-continuous
functions (cf. Ganster and Reilly3, Propositions 11 and 12).

Definition 3.13 — A function f : (X, T) = (Y, 0) is called sub-GLC*-continuous
if there is a basis B for (Y, o) such that f! (U) € GLC* (X, 1) for each UE B.

Proposition 3.14 — Let f: (X, ©) — (Y, 0) be a function.
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(i) fis sub-GLC*-continuous if and only if there is a subbasis C for (Y, o)
such that f1 (U) € GLC* (X, <) for each UE (.
(ii) If f is sub-LC-continuous then f is sub-GLC*-continuous.

PROOF : (i) Necessity — It follows from assumption that there is a basis B for
(Y, o) such that £ (U)E GLC* (X, t) for each UE B. Since B is also a subbasis
for (¥, o), the proof is obvious.

Sufficiency — For a subbasis C, let C; = {4 CY|A is an intersection of finitely
many sets belonging to C}. Then, Cg is a basis for (¥, 0). For a UE (3, U =
N {F;|F,;€ C, i€ A} where A is a finite set. By using Proposition 2.16(i) and
assumption we have f1(U) =) {f'(F)|i€ A} EGLC* (X, 7).

(i) It is obtained by (i) and Definition (iii) of Ganster and Reilly?.

Remark 3.15 : The following example shows that the converse of Proposition
3.14(ii) is not always true.

Example 316 — Let X =Y = {a, b, ¢}, T = {¢, {a}. {b, ¢}, X} and 0 = {¢,
{a, b}, Y}. Let f: (X, ) — (Y, 0) be the identity function. Since LCX, t) = {¢,
{a}, {b, ¢}, X}, GLC* (X, t) = P(X) and a family B = {{a, b}, Y} is a base for
(Y, o). f is not sub-LC-continuous; it is sub-GLC*-continuous.

Example 3.17 — The function f of Example 3 of Ganster and Reilly? (p. 423)

is an example of sub LC-continuous. By Proposition 3.14 (ii), it is also
sub-GLC*-continuous. However, f is not GLC*-continuous. In fact, similarly as in

Ganster and Reilly3, let U = R ~ ({0} U {1/n | n €N, n22}). Then, U is open
in Y, fI w=UuU {0} and CUfF(U)-f1(U)= {l/n | nEN, nz2} is not
g-closed. By using Theorem 2.10, f!(U)E&E GLC* (X,t). Hence f is not GLC*-
continuous. Moreover, it is not LC-continuous?.

From Proposition 3.14(ii), Remark 3.15, Example 3.17, Definition 3.13,
Proposition 3.3(i), Example 3.5, and Definition (iii) of Ganster and Reilly3, we have
the following diagram :

sub-LC-continuity 2= I sub-GLC*-continuity

fy

LC-continuity H—, GLC*-continuity
where A — B (resp. A + B) represents that A implies B (resp. A does not always
imply B).

Proposition 320 — (@) If f: (X, t) = (Y,0) and h: (X',v") = (Y',0) are sub-
GLC*-continuous, then fxh:(XxX ,txt) —=(YxY,ox0') is sub-GLC*-
continuous.

@@ If f: (X, ©y—~(Y,0) is sub-GLC*-continuous, then (1xf)A:(X,t)—
(X x Y, tx0) is sub-GLC*-continuous, where 1 : (X, t) = (X, 1) is the identity and
A:(X,t) > (X xX,txt) is the diagonal map defined by A(x)=(x,x) for every
xeX
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PROOF : (i) It follows from assumptions that there exist a basis B for (Y, o)
and a basis B’ for (Y, o') satisfying the condition of Definition 3.13 respectively.
Then, B" = {U xV|UE B, VEB'} is a basis for the product space
XxX,txt). It follows from Proposition 2.23 that (fxh) 1 (UxV)=

L) x (V) EGLC* X xX',tx7') for every Ux VE B". Therefore, fx h is sub-
GLC*-continuous.

(ii) The proof is similar to (i) using Proposition 2.16.
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