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A seminorm satisfying the square inequality (for some positive constants &k and c,
Icp(x)2 < p(xz) s cp(x)2 for all x) (respectively C*-inequality) on any algebra (respec-
tively *-algebra) is weakly submultiplicative (for some M, p(xy) s Mp(x)p(y) for all
x, y); and is equivalent to a submultiplicative uniform (respectivcly C*-) seminorm.
This is proved, and used to show that the spectral radius r is the only spectral
seminorm satisfying the square (in) equality on a Banach al, ebra commutative modulo
the radical; whereas Ptak’s spectral function s (s(x) = r(x x) ) is the only spectral
seminorm satisfying the C*~(in) equality on a hermitian Banach *-algebra.

§1. By an algebra A is meant a linear associative algebra, not necessarily unital.
A seminorm on A is a function p : A — [0, ®) such that p(x + y) <p(x)+ p(y) and
p(Ax) = | A|p(x) for all x,y EA and for all scalars A. p satisfies the square property
(resp. square inequality) if for all x €A, p(x?) = p(x)> (resp. if there exist k > 0,
¢ > 0 such that kp(x)? < p(x?) < cp(x)?). p satisfies the power inequality if there exists
k > 0, ¢ > 0 such that kp(x)" = p(x") < cp(x}" for all x. It is submultiplicative (resp.
weakly submultiplicative) if p(xy) = p(x) p(y) (resp. p(xy) = Mp{(x) p(y) for some M >
0) for all x, y in A. p is spectral if the set A% of all quasiregular elements in A is
open in (A, p). A seminorm p on a *-algebra A satisfies the C*-property (resp.
C*-inequality) if p(x’x) = p(x)? [resp. kp(x)? < p(x* x) < cp(x)* for some k > 0, ¢ > 0]
for all x.
Theorem — Let p be a spectral (linear) seminorm on a Banach algebra A. Let
= (xEA|p() = |
(a) If p satisfies the square irequality, then p is equivalent to the spectral radius
r, N, = rad A (radical of A) and A/N, is commutative. If p satisfies the
square property, then p = r.
(b) Let A be a *-algebra. If p satisfies the C*-inequality, then p is equivalent
to Ptak’s spectral function s(x) = r(x" x)'2, N, = srad A (star radical of A)
and A is hermitian. If p satisfies the C*-property, then p = s.
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Lemma — Let p be a seminorm on an algebra A.

(@) Let there exists ¢ > 0 be such that p(x?)<cp(x)2(xEA). Then
pxm)y =32 tpx)n (xEA, nz22). If A is commutative, then p(xy)
s 3cp(x) py)  (x,y €A).

(b) If p satisfies either square property or the power inequality, then
plx®) =p(xy" for all x€ A and for all n € N.

(c) Let p satisfy the square inequality. Then p is weakly submultiplicative, p is
equivalent to a submultiplicative seminorm with the square property and A/N,,
1s commutative and semisimple.

(d) Let A be a *-algebra. Let p satisfy the C*-inequality. Then p is weakly
submultiplicative, the involution is p-continuous and p is equivalent to a
submultiplicative seminorm with C*-property.

By Sebestyen®, a seminorm with the C*-property on any involutive algebra is
submultiplicative. Also, by Dedania®, a seminorm with the square property on any
algebra is submultiplicative. Parts (d) and (c) of above lemma contain inequality
analogues of these results. Our proof of (c) is based on essentially the same
arguments as in Dedania®. Further, it is shown in Theorem 3 of Bhatt et al? that
if | | is a norm on a C*-algebra (A, || ||) such that the involution is | | - continuous
and | | satisfies the C*-inequality, then | | is equivalent to || ||. It was asked therein
whether | | continuity of the involution can be omitted or not. Incidently, part (d)
of above lemma affirmatively answers this. This theorem gives extrinsic
characterizations of spectral radius r and Ptak’s spectral function s. In a Banach
algebra A, r has the square property. It is a seminorm if(f) A/rad A is commutative
(Aupetit!, Theorem 2, p. 48), in which case, r is a spectral seminorm (Bonsall and
Duncan’, Theorem 2.9, p. 12; Palmer®, Theorem 3.1). On the other hand, if A is a
Banach *-algebra, then s has the C*-property s{a)? = s(a* a) (a €A). It is a seminorm
if(f) A is hermitian (Bonsall and Duncan’®, §41), in which case, s {= m, the Gelfand
Naimark seminorm (Bonsall and Duncan’, § 36)] is a spectral seminorm (Palmer®,
p.- 295). The theorem shows that these properties uniquely determine r and s. As a
whole, this theorem supports a Meta Theorem (suggested by the similarity between
the square property and the C*-property of the respective norms) envisaged in Bhatt3
that there is a structural analogy between (certain aspects of) uniform Banach algebras
and C*-algebras; at a more general level, between Banach algebras commutative
modulo the radical and hermitian Banach *-algebras.

§2. Proof of Lemma — (a) Let A be commutative. Then the assumption
p(x®) scp(x)?> applied to the identity 4xy=(x+y)’-(x—y)* implies that
4p(xy) = 2c(p(x) + p(y))? for all x, y. Thus p(xy) <2¢ if p(x) =1, p(y)<1. Hence
pixy) s 2cp(x) p(y) for all x, y. The rest is easily proved by passing to the commu-
tative subalgebra of A generated by x and using induction.

(b) If p satisfies the power inequality, then for all x EA, p(x) s lim inf p(x")!/*
s lim sup p(x)V? < p(x). Thus p(x) = lim p(x")!/" exists, which gives the square

n—+cw
property. Now assume p has the square property. We can assume A to be
commutative by considering the subalgebra generated by x. By Dedania®, p is
submultiplicative. Now p coincides with the spectral radius in an appropriate uniform
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Banach algebra. This gives the desired conclusion.

(¢) The weak submultiplicativity follows from the following steps :
Step (1) : plxy + yx) < 6cp(x) p(y) (x,y EA)
Using the identity (x +y)? = x2 +y2 + xy + yx,
plxy +yx) s c[p(x + y)* + p(x)* + p(y)?]
s 2c[p(x)? + p(y)* + p(x) p()]-
If p(x) <1, p(y)s 1, then p(xy + yx) < 6¢c. Hence (1) follows.
Step (2) : p(xyx) = 42c* plx¥ p(y) (x,y EA)
The identity (x+y) =x3+y3 +xyx + yxy + x2y + yx2 + xy? + y*&x gives xyx + yxy =
(x+yP—x -y = (x%y + yx2) — (xy? + y%x).
Applying part (a) and Step (1),
ployx + yxy) s 3¢%p (x + y)* + 3¢? p(x)* + 32 p(yy
+ px?y + yx2) + p(y’x + xy?)
=3¢ [p(x + yP* + p(x)> + p(yP*] + 6cp(x?) p(y) + 6cp(x) p(y*)
= 3¢2 [(p(x) + ")) + px)* + p(y)*]
+ 6¢2 [p(x)* p(y) + p(x) pOYY]-

Let p(x)s1, p(y)=1. Then p(xyx+yxy)<42c¢% and replacing x by -x,plxyx
—yxy) s 42c%. Hence 2p(xyx) = p(2(xyx)) s plxyx + yxy) + p(xyx—yxy) implies p(xyx)
s 42¢2. Hence p(xyx) = 42¢2 p(x)* p(y) for all x, y in A.

Step (3) : plxy - yx) = mp(x) p(y) (x,y €EA) for some m > 0
By (1) and (2), the identity
(xy = yx)? + (xy + yx)? = 2[(xyx)y + y(ayx)]
gives kp(xy - yx)? s 2p[(xyx)y + y(xyx)] + pl(xy + yx))
= 12cp (xpx) p(y) + cplxy + yx)?
s 504¢3 p(x)? p(y)? + 36¢ p(x)? p(y)*.
Hence p(xy — yx) = mp(x) p(y) for some m > 0 and for all x, y.
Step (4) : p is weakly submultiplicative
Taking m; = max {m, 6c} and using the inequality
2p(xy) = p(2(xy)) s p(xy + yx) + p(xy — yx),

we get p(xy) < m, p(x) p(y) for all x, y.

Now without loss of generality, we may assume p to be a norm and
plxy) s mp(x) p(y) (x,y €A) for some m > 1. Then g(x) = mp(x) defines a submulti-

plicative norm with square inequality &q(x)z sqx?) = —:; g(x)? (x € A). By the remark
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following the proof of Corollary 8 of Bonsall and Duncan® (p. 77), A is commutative.
Define g;(x) = lim ¢(x")/". Then, by Corollary 3 of Bonsall and Duncan® (p.

n—ox
19), g, is a submultiplicative seminorm with square property. By iteration, for any
n €IN and any x €A,

2"-1 2"-1

(;nk“] q(X)Z"sq(xZ')S(ﬁ) g%,

k . . .
hence -';q(x)sql (x)s;:l-q(x). This shows that g, is a norm equivalent to g, hence
to p.

(d) Let k > 0, ¢ > 0 be such that kp(x)? s p(x* x) s cp(x)? for all x in A. Let x,
y €A; let g, d be any two complex numbers. The well known identity

3
dgdxy= Y i"(y + (i) gx) (dy +i"gx")

n=0

=X ir(dy+ingx* ) (dy +ingx")

implies that 4|g||d|p(xy)scZ[|d]|p(y)+|g|p(x)]>- For ¢ > 0, choosing g =
1/p(x*) +€), d = 1/(p(y) + €), one gets p(xy) s 4cp(x’) p(y) for all x, y. This implies
that

kp(xy)? = p((xy)* xy) = p(y* x* xy) s 4cp(y) p(x* xy) = 16¢2 p(y) p(x) p(xy).

Hence p(xy) s mp(x)p(y) for all x, y in A and m > 0. Hence for any x, kp(x*)?
< p(xx*) s mp(x) p(x*) implies that involution is p-continuous.

Next we show that p is equivalent to a C*-seminorm. Without loss of generality
we may assume m > 1 and p to be a norm. On A, let g,(x) = mp(x), g(x) = max
{gi(x), qi(x*)}. Then g is a submultiplicative norm with C*-inequality,
ki gx) = qx*x) s cig(x)? (xEA), ky=k/m and ¢, =c/m. Let B be the Banach
*.algebra obtained by completing (A, gq). Then &, g(z)2 s q(z*2) s¢c;q(z)* for all 2z
in B. We can assume that B is unital, otherwise, on the unitification B, of B, the
operator norm |z + Al | = sup {q(zu + ) : q(u) = 1, u € B} extends g and its satisfies
C*-inequality. Now, for any h = h* in B, k; q(e") < q(e”™ &) = g(1) = w (say). By
Corollary 2 of Aupetit! (p. 123), B is locally C*-equivalent; hence by a theorem of
Cuntz (Aupetit!, Theorem 4, p. 126), there exists a norm || - || on B, equivalent to
g, such that (B, || - ||) is a C*-algebra. Hence || - || is equivalent to p on A.

Remark : In part (d) of the lemma, AIN, need not be hermitian. Take A to be
the disc algebra with involution f*(z) = f(Z) and the C*-norm p(f) = sup {| iz} | :
zisreal, -1 szs1}.

Proof of the Theorem — By lLemma, p is weakly submultiplicative and is
equivalent to a submultiplicative seminorm g with the square property. Since p is
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spectral, g is spectral. By Theorem 3.1 of Palmer® and by the above Lemma, g(x)
= lim g(x")1’" = r(x) (x €EA). Thus p is equivalent to r. Now Theorem 2 of Aupetit!
(p. 48) implies that A/rad A is commutative. Further, by Theorem 2 of Aupetit! (p.
23), N,=N, = rad A. If p has square property, then p is submultiplicative, hence p
- q =17.

(b). () We can assume that A is unital. Let p have C*-property. By Sebestyen®,
p is submuitiplicative. Hence p sm, which is the greatest C*-seminorm
(Bonsall and Duncan®, § 36). Since p is spectral, m is spectral. Hence
for x €A, m(x)> =m(x* x) = lim m((x * xy')*/" = r(x * x) = lim p((x * x)")/»
= plx*x)=p(x)?, as well as, s(x)2=s(x*x)=r(x*x)=pk)2 Thus A is
hermitian (Bonsall and Duncan®, Theorem 11, p. 227) and
N,=N,, =sradA.

(i) Assume that p has C*-inequality. By part (c) of the Lemma, p is
equivalent to a C*-seminorm p;. Hence by above (i), p is equivalent to
p1 = 5, A is hermitian and N,=N, = srad A (Bonsall and Duncan’,

Theorem 4, p. 223).

§3. Remarks : (1) A Frechet algebra is a complete metrizable locally m-convex
algebra. An important unsolved problem about Frechet algebras is the Michael
problem (see Michael’, p. 53). Is every character (i.e. multiplicative linear functional)
on a commutative Frechet algebra continuous ? The above Lemma and the closed
graph theorem immediately imply that given a commutative Frechet algebra A, every
character on A is continuous iff every seminorm with square inequality on A is
continuous.

(2) For a seminorm on a Banach algebra, the square inequality is not sufficient
to imply submultiplicativity; e.g. on a Banach algebra (4, || -|) with ||x?]=|lx|?
for all x, take | x | = t||x]|, 0 <t <1. Also, in the presence of submultiplicativity,
the square inequality is not sufficient to give the square property. On the supnorm
Banach algebra (C(X), || - |l«) of continuous functions on a compact Hausdorff space
X, this is exhibited by the well known norm

|£1= sup {%(|f(x)+f(y)|+|f(x>—f(y>|):x,ye—:X}.

This also shows that the square inequality does not imply the power inequality

kp(xy* = p(x") = cp(x)".

(3) Let there be - > 0 such that p(x?) scp(x)? for all x. Is p weakly
submultiplicative, at least in Banach algebras ? Related questions are : Let A be an
algebra which is a Banach space in which square is continuous. Is multiplication
continuous ? Is any Banach space norm on C(X) equivalent to the supnorm ? The
numerical radius on a Banach algebra is known to be weakly submultiplicative; not
necessarily submultiplicative; and on a uniform Banach algebra (4, ||-D, r = || || =
the numerical radius. Characterize those Banach algebras in which numerical radius
is submultiplicative.
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