ON GENERALIZATIONS OF H-CLOSED SPACES

D. SOMASUNDARAM AND V. PADMAVATHY

Department of Mathematics, Madras University P. G. Centre, Salem 636 011, Tamil Nadu

(Received 2 March 1995; after revision 29 December 1995; accepted 4 January 1996)

In this paper, we obtain some generalizations of H-closed spaces using preopen sets and their properties. Besides these, we have extended the results of Arya and Bhamini² to the p-regular and pre-Urysohn spaces.

1. Introduction

The notion of preopen sets was first introduced by Mashour et al.⁷. Subsequently much has been done in the direction of generalizations of separation axioms, covering axioms and mappings using preopen sets. The concept of H-closedness was first introduced by Alexandroff and Urysohn¹ and Bourbaki³ characterized minimal Hausdorff and H-closed spaces. With particular reference to H-closed spaces. Liu⁶ and Porter and Thomas⁸ independently proved that in the category of H-closed spaces and continuous maps, the projective objects are finite spaces and injective objects are singletons.

Raghavan and Reilly⁹, as a continuation of the study of properties of *HP*-closed [Hausdorff *P*-spaces] spaces initiated by Cameron⁴ have shown that the class of *HP*-closed spaces has a projective maximum and a projective minimum. Further they have shown that in the category *HP*-closed spaces and continuous maps, the projective objects are discrete spaces.

Thompson¹⁰ generalized *H*-closed spaces using semi-open sets in the name of *S*-closed spaces. Arya and Bhamini² have introduced *S*-Urysohn closed and *s*-regular closed spaces using semi-separation axioms and filters using semiopen sets and have given characterizations of such spaces.

With the above works in the background the present paper is an attempt to generalize H-closed spaces by using preopen sets. In doing so, we adopt the method employed by Raghavan and Reilly⁹. Analogues of S-Urysohn closed and s-regular closed spaces using preopen sets are studied along the lines of Arya and Bhamini².

Throughout this paper (X, \mathcal{I}) represents a topological space without any separation axiom assumed on it. By nbd we mean neighbourhood and cl A represents the closure of a set $A \subset X$ and int A, denotes the interior of a set $A \subset X$.

In section 2, we furnish necessary preliminaries related to preopen sets. Section 3 deals with pre T_2 -closed spaces and locally pre T_2 -closed spaces and their one point extensions. Sections 4 and 5 are devoted to pre-Urysohn-closed and p-regular closed spaces respectively. As an application of pre T_2 -closed spaces, it is shown that in the category of pre T_2 -closed spaces and continuous maps, the projective objects are finite spaces.

2. Preliminaries

In this section, some basic definitions and results regarding preopen sets and related concepts are presented.

A subset $A \subset X$ is called preopen if $A \subset$ int cl A and the complement of a preopen set is called preclosed. The family of all preopen sets is denoted by PO(X) and that of preclosed sets by PF(X). For a subfamily $\{B_i \mid i \in I\} \subset PO(X)$, $UB_i \in PO(X)$. For $A \subset Y \subset X$ and $A \in PO(X)$, $A \in PO(Y)$ whenever Y is open in X. For $A \subset Y \subset X$ and $A \in PF(Y)$, $A \in PF(X)$ whenever $Y \in PF(X)$.

If $U \in PO(X)$, $V \in PO(U)$ then $V \in PO(X)$. For any subset $A \subset X$, the conditions that A is preopen, A is the intersection of a regular open set and a dense set and A is the intersection of an open set and a dense set are equivalent. The preinterior of a subset $A \subset X$ is the union of all preopen sets which are contained in A and it is denoted by pint A or A_* . The intersection of all preclosed sets containing a set A is called the preclosure of A and it is denoted by pcl A or A^* . The preinterior of a set A is preopen and its preclosure is preclosed. For $A \subset X_0 \subset X$ and X_0 an open set in X p $\operatorname{cl}_{X_0}(A) = p$ $\operatorname{cl}_A \cap X_0$ where p $\operatorname{cl}_{X_0}A$ is the preclosure of A in X_0 . For a product space $X = X_1 \times X_2$, $A \subset X$ is in PO(X) if and only if $A = A_1 \times A_2$ where $A_1 \in PO(X_1)$ and $A_2 \in PO(X_2)$.

A mapping $f: X \to Y$ is precontinuous if $f^{-1}(V) \in PO(X)$ for every open set V of Y and f is preopen whenever $f(U) \in PO(Y)$ for every open set V of X.

A space X is called pre T_2 if for every pair of distinct points x and y of X, there exist disjoint preopen sets U and V containing x and y respectively. A p-regular space is one in which a point $x \in X$ and a closed set F not containing x are separated by disjoint preopen sets. A space X is called pre Urysohn if for any two distinct points x and y, there exist preopen sets U and V containing x and y respectively such that $p \in U \cap p \in V = \emptyset$. An almost p-regular space X is defined as one in which a point $x \in X$ and a regular closed set F not containing x are separated by preopen sets.

We quote the following theorems, without proof, as they are very useful in studying p-regular closed and pre Urysohn-closed spaces.

Theorem A — For a space X the following are equivalent:

(1) X is p-regular

- (2) For each $x \in X$ and each open set U of X containing x, there exists $V \in PO(X)$ such that $x \in V \subset p$ of $V \subset U$.
- (3) For each closed set F of X, $\bigcap \{p \text{ cl } V \mid F \subset V \in PO(X)\} = F$.
- (4) For each subset A of X and each open set U of X such that $A \cap U \neq \emptyset$, there exists $V \in PO(X)$ such that $A \cap V \neq \emptyset$ and p cl $V \subset U$.
- (5) For each nonempty subset A of X and each closed set F of X such that $A \cap V \neq \emptyset$, there exist $V, W \in PO(X)$ such that $A \cap V \neq \emptyset$, $F \subset W$ and $V \cap W = \emptyset$.

Theorem B — Every almost p-regular Hausdorff space is a pre Urysohn space. Theorem C — For a space X the following are equivalent.

- (a) X is almost p-regular
- (b) For each point $x \in X$ and a regular open set G containing x, there exists a preopen set U such that $x \in U \subset p$ cl $U \subset G$.
- (c) Every regular closed set F is the intersection of all preclosed preneighbourhoods of F.
- (d) For every set A and a regular open set B such that $A \cap B \neq \emptyset$, there exists a preopen set U such that

$$A \cap U \neq \emptyset$$
 and p cl $U \subset B$.

(e) For every nonempty set A and a regular closed set B such that $A \cap B = \phi$, there exists disjoint preopen sets G and H such that $A \cap G \neq \phi$ and $B \subset H$.

3. One Point Extensions

In this section, analogous to H-closed spaces, we define pre T_2 -closed spaces and by developing the necessary preliminaries, we prove the existence of a projective maximum and a projective minimum in the class of one point extensions for a locally pre T_2 -closed extremally disconnected Hausdorff space.

Definition 1 — Let (X, \mathcal{I}) be a topological space. Let $A \subseteq X$. Then (i) A is said to be pre T_2 -closed relative to X if and only if every preopen cover U of A has a finite subfamily $U' \subset U$ such that $A \subset \bigcup \{cl \ U \mid U \in U'\}$.

(ii) A is said to be a pre T_2 -closed set if and only if $(A, \mathcal{J}/A)$ is pre T_2 -closed.

Example 1 — Let (X, \mathcal{I}) be a topological space with the indiscrete topology. Every subset of X is preopen and dense in X. So for every preopen cover U and $U \in \mathcal{U}$, cl U = X and (X, \mathcal{I}) is pre T_2 -closed.

Example 2 — Consider (X, \mathcal{I}) with the cofinite topology. Every infinite set is preopen and dense in X. Hence (X, \mathcal{I}) is pre T_2 -closed.

Definition 2 — A space (X, \mathcal{I}) is said to be locally pre T_2 -closed if for each $x \in X$ and an open set U containing x, the closure of U is pre T_2 -closed.

Theorem 1 — Let (X, \mathcal{I}) be a topological space. Then

- (i) if $A \subset X$ is pre T_2 -closed relative to X, then A is closed in X, if X is Hausdorff.
- (ii) if $A \subset X$ is an open set, A is pre T_2 -closed relative to X if and only if A is pre T_2 -closed set.

PROOF OF (i): Let $x \in X - A$. Since X is a Hausdorff space, there exist for each $y \in A$, open neighbourhoods U_y and V_y of x and y respectively such that $U_y \cap V_y = \emptyset$. Then $\{V_y \mid y \in A\}$ is an open cover hence a preopen cover of A. Since A is pre T_2 -closed, there exists a finite subset $B \subset A$ such that $A \subset \bigcup$ {cl $V_y \mid y \in B$ }. Let $U = \bigcap \{U_y \mid y \in B\}$. Then U is an open neighbourhood of x such that $A \cap U = \emptyset$. Thus cl A = A and hence A is closed.

PROOF OF (ii): Assume A to be a pre T_2 -closed set. Then $(A, \mathcal{J}/A)$ is pre T_2 -closed. Let $\{U_y \mid y \in A\}$ be a preopen cover of A with $U_y \in PO(X)$ for every $y \in A$. Let $V_y = A \cap U_y$. Since A is open, $V_y \in PO(A)$. So $\{V_y \mid y \in A\}$ is a preopen cover of A in A. As $(A, \mathcal{J}/A)$ is pre T_2 -closed, there exists a finite subset $B \subset A$ such that $A \subset \bigcup \{\operatorname{cl}_A V_y \mid y \in B \subset A\}$.

Now $\operatorname{cl}_A V_y = \operatorname{cl} V_y \cap A \subset \operatorname{cl} U_y$. So $A \subset \bigcup \{\operatorname{cl} U_y \mid y \in B \subset A\}$. Thus A is pre T_2 -closed relative to X. As A is open, every preopen subset of A is preopen in X and hence the converse part of (ii) is obvious.

Theorem 2 — Let (X, \mathcal{I}) be a topological space. Then the following are equivalent.

- (i) X is pre T_2 -closed.
- (ii) The closure of an open subset of X is pre T_2 -closed relative to X.
- (iii) Every closed-open subset of X is pre T_2 -closed set.

PROOF OF (i) \Rightarrow (ii): Let U be an open subset of X. Let $A = \operatorname{cl} U$. Let U be a preopen cover of A. Then $\mathcal{D} = \mathcal{U} \cup (X - A)$ is a preopen cover of X so that there exists a finite number of members V_i , i = 1, 2, ..., n in \mathcal{D} such that $X = \bigcup \{\operatorname{cl} V_i \mid i = 1, 2, ..., n, V_i \in \mathcal{D}\}$. If no V_i is (X - A) then $A \subset \bigcup \{\operatorname{cl} V_i \mid i = 1, 2, ..., n, V_i \in \mathcal{U}\}$. If $V_k = X - A$, since $U \subset \operatorname{int} \operatorname{cl} U = \operatorname{int} A = X - \operatorname{cl} (X - A) = (X - \operatorname{cl} V_k) \subset \bigcup \{\operatorname{cl} V_i \mid i = 1, 2, ..., k - 1, k + 1, ..., n, V_i \in \mathcal{U}\}$.

 $A = \operatorname{cl} U \subset \bigcup \{\operatorname{cl} V_i \mid i = 1, 2, ..., k - 1, k + 1, ..., n, V_i \in \mathcal{U}\}$ as the right-hand side is closed. Thus $A = \operatorname{cl} U$ is pre T_2 -closed relative to X.

PROOF OF (ii) \Rightarrow (iii): Let A be open and closed. Then $A = \operatorname{cl} A$. So A is pre T_2 -closed relative to X. By Theorem (1), A is pre T_2 -closed set.

PROOF (iii) \Rightarrow (i) : Immediate.

Remark 1: If X is extremally disconnected in the above theorem, then the closure of an open set is pre T_2 -closed set whenever it is pre T_2 -closed relative to X.

Theorem 3 — Let (X, \mathcal{J}) be a topological space and $A \subset X$. Then A is pre T_2 -closed if and only if every regular open cover has a finite subcover whose closures cover A.

PROOF: Let A be pre T_2 -closed. Let $\{V_\alpha/\alpha\in I\}$ be a regular open cover of A with each $V_\alpha\in RO(X)$ where RO(X) represents the set of all regular open sets of X. Then $\{V_\alpha/\alpha\in I\}$ is an open, hence pre open cover of A. As A is pre T_2 -closed, $A\subset \bigcup$ $\{\operatorname{cl}\ V_i\mid i=1,\ 2,\ ...,\ n\}$. Conversely, let $\{U_\alpha/\alpha\in I\}$ be a preopen cover of A where $U_\alpha\in PO(X)$. Since $U_\alpha\in PO(X)$, $U_\alpha\subset \operatorname{int}\ \operatorname{cl}\ U_\alpha$ for every α . Now $W_\alpha=\operatorname{int}\ \operatorname{cl}\ U_\alpha/\alpha\in I\}$ is a regular open cover of A with $W_\alpha\in RO(X)$ and hence for a finite subcollection say $W_{\alpha_1}W_{\alpha_2},...,W_{\alpha_n},A\subset \bigcup$ $\{\operatorname{cl}\ W_{\alpha_i}\mid i=1,\ 2,\ ...,\ n\}=\bigcup$ $\{\operatorname{cl}\ (\operatorname{int}\ \operatorname{cl}\ U_{\alpha_i})\mid i=1,\ 2,\ ...,\ n\}$

Thus A is pre T_2 -closed.

Corollary 1 — A space (X, \mathcal{I}) is pre T_2 -closed if and only if every regular open cover has a finite subcover the closures of whose members cover X.

Theorem 4 — If B is open preclosed subset of A which is open pre T_2 -closed relative to X, then B is pre T_2 -closed relative to X.

PROOF: Let $\mathcal{U}\{U_y \mid y \in B\}$ be a preopen cover of B relative to X. Then $\mathcal{A} = \mathcal{U} \cup W$ where $W \cap A = (A - B)$, is a preopen cover of A [since A is open and (A - B) is preopen in A, $(A - B) \in PO(X)$; as W is preopen $W \cap A \in PO(X)$] for a preopen set $W \in PO(X)$. As B is open in A, (A - B) is closed in A. Thus (A - B) is closed and preopen in A. Since A is pre T_2 -closed, $A \subset \bigcup$ {cl $U_y \mid U_y \in \mathcal{A}' \subset \mathcal{A}$, \mathcal{A}' is a finite subfamily of \mathcal{A} }. If no U_y is W, $B \subset \bigcup$ {cl $U_y \mid U_y \in \mathcal{A}' \subset \mathcal{U}$ }. If some $U_y = W$, then $B \cap Cl = \emptyset$. For if $x \in B \cap Cl = \emptyset$, B being open $B \cap W \neq \emptyset$. But $(A - B) = A \cap W$, a contradiction. So $B \cap Cl = \emptyset$, $(A - B) \subset Cl = \emptyset$ and $B \subset \bigcup$ {cl $U_y \mid U_y \in \mathcal{A}' - W$ }. Thus B is pre T_2 -closed relative to X.

Theorem 5 — Let $B \subset A \subset X$ and A be open in X. Then B is pre T_2 -closed relative to X if and only if B is pre T_2 -closed relative to A.

PROOF: Let $C = \{U_v | y \in B\}$ be a preopen cover of B such that $y \in U_v$. Since

A is open $\{U_y \cap A \mid U_y \in C\}$ is a preopen cover of B in the relative topology of A. Since B is pre T_2 -closed relative to A, $B \subset \bigcup$ $\{\operatorname{cl}_A(U_y \cap A) \mid y \in C, C \subset B \text{ is a finite subset of } B\}$. $\operatorname{cl}_A(U_y \cap A) = \operatorname{cl}(U_y \cap A) \cap A \subset \operatorname{cl}U_y$. So $B \subset \bigcup$ $\{\operatorname{cl}(U_y \mid y \in C)\}$ and B is pre T_2 -closed relative to X. Conversely, let $\{V_y \mid y \in B\}$ be a preopen cover of B with $V_y \in PO(A)$ for every y. As A is open in X, each $V_y \in PO(X)$. Thus $\{V_y \mid y \in B\}$ is a preopen cover of B relative to X. Since B is pre T_2 -closed relative to X, $B \subset \bigcup$ $\{\operatorname{cl}(V_y \mid y \in D \subset B; D \text{ is finite subset of } B\}$. Now $B = B \cap A \subset \bigcup$ $\{\operatorname{cl}(V_y \mid y \in D)\}$ \cap $A = \bigcup$ $\{\operatorname{cl}(U_y \cap A \mid y \in D)\} = \bigcup$ $\operatorname{cl}_A V_y \mid y \in D\}$.

Hence B is pre T_2 -closed relative to A.

Theorem 6 — Let $\{A_i; A_i \subset X; i = 1, 2, ..., n\}$ be pre T_2 -closed relative to X. Then $\bigcup \{A_i; i = 1, 2, ..., n\}$ is pre T_2 -closed relative to X.

PROOF: Let $\{U_{ij}: j \in I\}$ be a preopen cover of A_i for i = 1, 2, ..., n. Since each A_i is pre T_2 -closed, $A_i \subset \bigcup$ $\{\text{cl } U_{ij} | j = 1, 2, ..., n_i\}$ which shows that

$$A = \bigcup_{i=1}^{n} A_i \subset \bigcup_{i=1}^{n} \bigcup_{j=1}^{n_i} \operatorname{cl} U_{ij}.$$

Thus there exists a finite subfamily $\{U_{\alpha}; \alpha = 1, 2, ..., k\}$ such that $A \subset \bigcup$ {cl $U_{\alpha} \mid \alpha = 1, 2, ..., k\}$ for a preopen cover $\{U_{\alpha}, \alpha = 1, 2, ...\}$ of A.

Theorem 7 — Let X be pre T_2 -closed space and Y a compact space. Then the product $X \times Y$ is pre T_2 -closed.

PROOF: Let \mathcal{U} be a regular open cover of $X \times Y$. For each $x \in X$, $\{x\} \times Y = Y$ and so is compact. As \mathcal{U} is an open cover of $\{x\} \times Y$, a finite number of members, say, U_{ij}^x , j = 1, 2, ..., n of \mathcal{U} cover $\{x\} \times Y$. In fact we can find an open set V_x containing x such that

$$\{x\} \times Y \subset V_x \times Y \subset \bigcup \{U_{ii}^x | j = 1, 2, ..., n\}$$
 [by the tube lemma].

Thus cl $(V_x \times Y) = \text{cl } V_x \times Y \subset \bigcup$ {cl $U_{ij}^x \mid j = 1, 2, ..., n$ }. This shows that int (cl $V_x \times Y$) = int cl $V_x \times Y \subset \bigcup$ {cl $U_{ij}^x \mid j = 1, 2, ..., n$ }. Consider $\{W_x = \text{int cl } V_x \mid x \in X\}$. This is a regular open cover for X. As X is pre T_2 -closed, there exists a finite number of members, say $W_{x_1}, W_{x_2}, ..., W_{x_n}$ of $\{W_x = \text{int cl } V_x \mid x \in X\}$ such that $X \subset \bigcup$ {cl $W_{x_i} \mid i = 1, 2, ..., m$ }. Thus $X \times Y \subset \bigcup$ {cl $W_{x_i} \times Y \mid i = 1, 2, ..., m$ } $\subset \bigcup$ {cl $U_{ij}^x \mid i = 1, 2, ..., n$; i = 1, 2, ..., m}. Therefore there exists a finite number of members of U such that $X \times Y \subset \bigcup$ {cl $V_k \mid k = 1, 2, ..., m + n, V_n \in U$ } and $X \times Y$ is pre T_2 -closed.

Theorem 8 — Let $f: X \rightarrow Y$ be a continuous surjection. If X is pre T_2 -closed, so is Y.

PROOF: Let $\{U_{\alpha} \mid \alpha \in I\}$ be a preopen cover of Y. Since U_{α} is a preopen set in Y, $U_{\alpha} \subset \operatorname{int} \operatorname{cl} U_{\alpha}$ for every $\alpha \in I$. Since f is continuous $\{f^{-1} (\operatorname{int} \operatorname{cl} U_{\alpha}) \mid \alpha \in I\}$ is an open, hence preopen cover of X. As X is pre T_2 -closed, there exists a finite subset $I_0 \subset I$ such that

$$X \subset \bigcup \{ cl \ (f^{-1} \text{ int } cl \ U_{\alpha}) \mid \alpha \in I_0 \}.$$

Thus

$$Y = f(X) \subset f(\bigcup \{\operatorname{cl} f^{-1} (\operatorname{int} \operatorname{cl} U_{\alpha}) \mid \alpha \in I_{0}\})$$

$$= \bigcup \{f(\operatorname{cl} f^{-1} \operatorname{int} \operatorname{cl} U_{\alpha}) \mid \alpha \in I_{0}\}$$

$$\subset \bigcup \{\operatorname{cl} (f(f^{-1} (\operatorname{int} \operatorname{cl} U_{\alpha}))) \mid \alpha \in I_{0} \subset \bigcup \{\operatorname{cl} (\operatorname{int} \operatorname{cl} U_{\alpha}) \alpha \in I_{0}\}$$

$$= \bigcup \{\operatorname{cl} U_{\alpha} \mid \alpha \in I_{0}\}$$

as f is a surjection. Thus Y is pre T_2 -closed.

Proposition 1 — Let (X, \mathcal{I}) be an extremally disconnected space. Then the following are equivalent.

- (i) X is locally pre T_2 -closed
- (ii) Each point of X has a neighbourhood which is pre T_2 -closed.
- (iii) Each point of X has a neighbourhood which is pre T_2 -closed set.

PROOF: Follows by the fact that in an extremally disconnected space, closure of an open set is open.

Theorem 9 — Every locally pre T_2 -closed extremally disconnected Hausdorff space is regular.

PROOF: Since X is locally pre T_2 -closed, every $x \in X$ has a neighbourhood U whose closure is pre T_2 -closed. As X is extremally disconnected cl U is open as well. So for a point $x \in X$ and a closed set F not containing x, cl U and $X - \operatorname{cl} U$ separate x and F.

Theorem 10 — Let X be a locally pre T_2 -closed extremally disconnected (Hausdorff) space and Y a compact (Hausdorff) space. The product $X \times Y$ is locally pre T_2 -closed.

PROOF: Since X is locally pre T_2 -closed, each $x \in X$ has a neighbourhood U_x whose closure is pre T_2 -closed. As X is extremally disconnected cl U_x is also open. So cl U_x is a pre T_2 -closed set. That is, if $Z = \operatorname{cl} U_x$, then $(Z, \mathcal{I}/Z)$ is a pre T_2 -closed space. Thus by Theorem 7, $Z \times Y$ is pre T_2 -closed. Now $U_x \times Y$ is an open neighbourhood of $(x, y) \in X \times Y$, cl $(U_x \times Y) = \operatorname{cl} U_x \times Y = Z \times Y$ is pre T_2 -closed

set. Thus $X \times Y$ is locally pre T_2 -closed [cl U_x is both open and closed in X, and hence cl $U_x \times Y$ is both open and closed in $X \times Y$].

In the following we define one point extensions for topological spaces and extend the same to non-pre T_2 -closed spaces.

Definition 3.— A topological space (Y, U) is said to be an extension of (X, \mathcal{I}) if $X \subset Y$, $U/X = \mathcal{I}$, $\operatorname{cl}_Y(X) = Y$ where $\operatorname{cl}_Y(X)$ denotes the closure of X in Y. (Y, U) is a one-point pre T_2 -closed extension of (X, \mathcal{I}) if (Y, U) is an extension of (X, \mathcal{I}) ; (Y, U) is pre T_2 -closed and (Y - X) is singleton.

Theorem 11 — Let (X, \mathcal{I}) be a Hausdorff space. If (Y, \mathcal{U}) is a one-point Hausdorff pre T_2 -closed extension of (X, \mathcal{I}) then

- (1) X is open in Y.
- (2) X is pre T_2 -closed if and only if (Y X) is U-open.
- (3) X is locally pre T_2 -closed.

PROOF: Let $Y - X = \{\pi\}$. Since Y is Hausdorff, $\{\pi\}$ is closed and X is U open in Y. Since Y is Hausdorff for each $x \in X$, there exists a U-open neighbourhood U of x such that $\pi \notin \operatorname{cl}_Y U$. Since $\pi \notin U$, and X is U-open, U is open in X. Also $\operatorname{cl}_X U = \operatorname{cl}_Y U \cap X = \operatorname{cl}_Y U$. Since Y is pre T_2 -closed $\operatorname{cl}_Y U$ is pre T_2 -closed relative to Y by Theorem (2). Since X is open, $\operatorname{cl}_X U = \operatorname{cl}_Y U \subset X \subset Y$, by Theorem (5), $\operatorname{cl}_X U$ is pre T_2 -closed relative to X. Thus X is locally pre T_2 -closed. If (Y - X) is open relative to Y, X is closed relative to Y. That is, X is closed open subspace of Y. As Y is pre T_2 -closed relative to Y by Theorem (2). Since Y is Hausdorff, X is pre T_2 -closed relative to Y implies X is closed in Y and $\{\pi\}$ is open. Thus (Y - X) is open.

Definition 4 — Let (X, \mathcal{J}) be a topological space. A filter \mathcal{F} on X is said to be an open filter if and only if (1) $\mathcal{F} \subset \mathcal{J}$; (2) $\phi \notin \mathcal{F}$; (3) if $\{U_i\} \subset \mathcal{F}$. $\bigcap_{i=1}^{n} (U_i) \in \mathcal{F}$; (4) $U \in \mathcal{J}$, $U \supset V \in \mathcal{F}$ then $U \in \mathcal{F}$.

Theorem 12 — Let (X, \mathcal{I}) be a locally pre T_2 -closed Hausdorff space which is not pre T_2 -closed.

Let $X^* = X \cup \{\pi\}$ where $\pi \notin X$. Then

(a) $\mathcal{J}^* = \mathcal{J} \cup \{\{\pi\} \cup V \mid V \in \mathcal{F}\}$ is a Hausdorff topology on X^* where \mathcal{F} is a filter generated by $\{U \mid U \in \mathcal{J}, \text{ such that } (X - U) \text{ is pre } T_2\text{-closed}\}$. (b) (X^*, \mathcal{J}^*) is a one-point pre T_2 -closed extension of (X, \mathcal{J}) . (c) (X^*, \mathcal{J}^*) is the projective minimum in the set of all one point pre T_2 -closed extensions of (X, \mathcal{J}) .

PROOF: Let $\alpha \{U \subset X \mid U \in \mathcal{I} \text{ and } (X - U) \text{ is pre } T_2\text{-closed}\}$. Since X is not pre $T_2\text{-closed}$, $\phi \notin \alpha$. Let $U_i \in \alpha$ for i = 1, 2, ..., n. Since each $(X - U_i)$ is pre

 T_2 -closed $\bigcup_{i=1}^n (X-U_i)$ is pre T_2 -closed by Theorem (6). But $\bigcup_{i=1}^n (X-U_i) = \prod_{i=1}^n U_i$. So $\bigcap_{i=1}^n U_i \in \alpha$. Hence α is a pre open filter base. Then \mathcal{J}^* is a Hausdorff topology on X^* . Let $x, y \in X^*$ with $x \neq y$. If $x, y \in X$, there exist disjoint open sets in X, hence in X^* , containing x and y respectively. If $x \neq \pi$, since X is locally pre T_2 -closed, x has an open neighbourhood U whose closure is pre T_2 -closed relative to X. Consider U and $\{\pi\} \cup (X - \operatorname{cl} U)$. These are the required disjoint \mathcal{J}^* -open sets containing x and π respectively. Thus (X^*, \mathcal{J}^*) is a Hausdorff space.

 X^* is pre T_2 -closed — Consider a \mathcal{J}^* -pre open cover \mathcal{G} of X^* . There exists a $G_0 \subseteq \mathcal{G}$ such that $\pi \in G_0 \subset \operatorname{int}_{X^*} \operatorname{cl}_{X^*} G_0$ where $\operatorname{int}_{X^*} \operatorname{cl}_{X^*} G_0$ is regular open in X^* and hence open in X^* . Since α is a filter base, there exists an open set U such that $\{\pi\} \bigcup U \subset \operatorname{int}_{X^*} \operatorname{cl}_{X^*} G_0 \subset \mathcal{J}^*$ (G_0) and (X - U) is pre T_2 -closed relative to X. Further, since X is open, $\{G \cap X \mid G \in \mathcal{G}\}$ is a preopen cover of (X - U) and there exist a $G_i \in \mathcal{G}$, i = 1, 2, 3, ..., n, such that $(X - U) \subset \bigcup \{\operatorname{cl}_X (G_i \cap X) \mid i = 1, 2, ..., n\}$ $\subset \bigcup \{\operatorname{cl}_X G_i \mid i = 1, 2, ..., n\}$. Thus

$$X^* = \{ \{\pi\} \bigcup U \} \ U \ (X - U) \subset \mathcal{I}^*(G_0) \bigcup \{ U \ \mathcal{I}^* \ (G_i) \ | \ i = 1, 2, ..., n \}$$
$$= \bigcup \{ \mathcal{I}^* \ G_i \ | \ G_i \in \mathcal{G}, \ i = 0, 1, ..., n \}.$$

Thus X is pre T_2 -closed.

Let (Y, T) be any one point pre T_2 -closed extension of (X, \mathcal{I}) . Define $f: Y \to X^*$ such that f(x) = x for all $x \in X$ and $f(\xi) = \pi$ where $\xi = Y - X$. Since X is open in X^* and Y, f is the identity map on X and the spaces involved are Hausdorff, it is enough to verify the continuity of f at ξ . Indeed if G is a basic open neighbourhood of π , then $G = \{\pi\} \bigcup U$ where (X - U) is pre T_2 -closed relative to X. As X is open, (X - U) is pre T_2 -closed relative to Y by Theorem (5). As Y is Hausdorff (X - U) is closed in Y. So $Y - (X - U) = \{\pi\} \bigcup U$ is open in Y. Since $f^{-1}(G) = \{\xi\} \bigcup U$, f is continuous at ξ . Thus f is continuous and X^* is the projective minimum.

Theorem 13 — Let (X, \mathcal{I}) be a locally pre T_2 -closed extremally disconnected Hausdorff space which is not pre T_2 -closed. Let $X^* = X \cup \{\pi\}$ where $\pi \notin X$. Then

- (a) $\mathcal{J}^{\#} = \mathcal{J} \cup \{\{\pi\} \cup U | U \in \mathcal{J}, (X \text{int cl } U) \text{ is pre } T_2\text{-closed relative to } X\}$ is a Hausdorff topology on X^{\bullet} .
- (b) (X^*, \mathcal{I}^*) is a one point pre T_2 -closed extension of (X, \mathcal{I})

(c) (X', \mathcal{J}^*) is the projective maximum in the set of all one point pre T_2 -closed extensions of (X, \mathcal{J}) .

PROOF: Let $\beta = \{U \mid U \in \mathcal{I}, (X - \text{int cl } U) \text{ is pre } T_2\text{-closed relative to } X\}$. Then as (X - int cl U) = cl (X - cl U), cl (X - cl U) is closed-open subset of X as X is extremally disconnected. Now $\phi \notin \beta$, $\bigcap_{i} U_i \in \beta$ for U_i , (i = 1, 2, ..., n)

as X is extremally disconnected. Now $\emptyset \notin \beta$, $\bigcup_{i=1}^{N} U_i \in \beta$ for U_i , (i = 1, 2, ..., n) $\in \beta$. Further if $U \in \beta$ and $U \subset V$ where $V \in \mathcal{I}$ then $(X - \text{int cl } V) \subset (X - \text{int cl } U)$.

As (X - int cl U) is pre T_2 -closed relative to X and (X - int cl U) is an open set of X, (X - int cl U) is pre T_2 -closed by Theorem (1). Now (X - int cl V) is pre T_2 -closed by Theorem (2). Thus $V \in \beta$ and β is an open filter on X.

 \mathcal{J}^* is a Hausdorff topology — Let $x, y \in X^*$. If $x \neq y$ and $x, y \in X$, then there exist disjoint open sets in X, hence X^* , containing them. If $x \neq \pi$, there exists a neighbourhood U of x such that cl U is pre T_2 -closed. As X is extremally disconnected cl U is open and int cl U = cl U. Now, the required neighbourhoods of x and π are U and $\{\pi\}$ \bigcup (X - int cl U) respectively.

 $(X^*, \mathcal{J}^\#)$ is pre T_2 -closed — Consider a $\mathcal{J}^\#$ -preopen cover \mathcal{G} of X^* . There exists a $G_0 \subseteq \mathcal{G}$ such that $\pi \in G_0 \subset \operatorname{int}_{X^*} \operatorname{cl}_{X^*} G_0$. Now $\operatorname{int}_{X^*} \operatorname{cl}_{X^*} G_0$ is a $\mathcal{J}^\#$ -open set containing π and therefore, we can find $U \in \mathcal{J}$ such that $\{\pi\}$ $\bigcup U \subset \operatorname{int}_{X^*} \operatorname{cl}_{X^*} G_0 = U'$ (say) with $(X - \operatorname{int}_X \operatorname{cl}_X U)$ pre T_2 -closed relative to X. Now $\{G \cap X \mid G \in \mathcal{G}\}$ is a \mathcal{J} -preopen cover of (X - U) as X is open. Since $U \subset \operatorname{int}_X \operatorname{cl}_X U$, $(X - \operatorname{int}_X \operatorname{cl}_X U) \subset (X - U)$, $\{G \cap X \mid G \in \mathcal{G}\}$ is also a cover of $(X - \operatorname{int}_X \operatorname{cl}_X U)$. Since $(X - \operatorname{int}_X \operatorname{cl}_X U)$ is pre T_2 -closed.

$$(X - \operatorname{int}_X \operatorname{cl}_X U) \subset \bigcup \{\operatorname{cl}_X (G_i \cap X) \mid i = 1, 2, ..., n\}, G_i \in G\}.$$

Now $X' = \{\{\pi\} \cup \operatorname{int}_X \operatorname{cl}_X U\} \cup (X - \operatorname{int}_X \operatorname{cl}_X U)$. As $\{\pi\} \cup U \subset \{\pi\} \cup \operatorname{int}_X \operatorname{cl}_X U \subset \{\pi\} \cup \operatorname{cl}_X U \subset \operatorname{cl}_X U' = \operatorname{cl}_X (\operatorname{int}_X \operatorname{cl}_X G_0) = \operatorname{cl}_X G_0$. So

$$X^* \subset \operatorname{cl}_{X^*} G_0 \cup \{ \cup \{ \operatorname{cl}_{X^*} G_i | i = 1, 2, ..., n, G_i \} \}$$

= $\bigcup \{ \operatorname{cl} G_i | i = 0, 1, 2, ..., n, G_i \in \mathcal{G} \}.$

Thus (X', \mathcal{J}'') is pre T_2 -closed.

 (X^*, \mathcal{J}^*) is the projective maximum — Let (Y, T) be any other one point pre T_2 -closed extension of (X, \mathcal{J}) . Define $f: X^* \to Y$ by f(x) = x for all $x \in X$ and $f(\pi) = \eta$ where $\eta = Y - X$. Since X is Hausdorff $X \in \mathcal{J}^*$, $X \in T$, and f is the identity map on X, it is enough to verify continuity of f at π . Let U be a T-open neighbourhood of η . $f^{-1}(U) = (U \cap X) \cup \{\pi\}$. Since Y is pre T_2 -closed,

 $\operatorname{cl}_Y(Y-\operatorname{cl}_YU)$ is pre T_2 -closed. Now $\operatorname{cl}_Y(Y-\operatorname{cl}_YU)\subset X\subset Y$ where $X\in T$. So $\operatorname{cl}_Y(Y-\operatorname{cl}_YU)$ is pre T_2 -closed relative to X. Now $\operatorname{int}_X\operatorname{cl}_X(U\cap X)=\operatorname{int}_Y\operatorname{cl}_YU\cap X$ so that $Y-\operatorname{int}_Y\operatorname{cl}_YU=X-\operatorname{int}_X\operatorname{cl}_X(U\cap X)$. This implies $\{\pi\}\bigcup (U\cap X)\in \mathcal{J}^\#$. Thus f is continuous.

4. PRE-URYSOHN CLOSED SPACES

This section deals with the definition and characterization of a pre-Urysohn closed space using filters.

Definition 5 — A pre-Urysohn space X is said to be pre-Urysohn closed if it is closed in every pre-Urysohn space in which it can be embedded.

Definition 6 — A filter base \mathcal{F} is said to be a pre-Urysohn filter base, if whenever x is not an adherent point of \mathcal{F} , there exists a preopen set U containing x such that p cl $U \cap cl F = \emptyset$ for some $F \in \mathcal{F}$.

Definition 7 — An open cover $\mathcal U$ of X is said to be a pre-Urysohn cover if there exists a preopen cover $\mathcal V$ of X such that for each $V \in \mathcal V$ there is a $U \in \mathcal U$ such that p cl $V \subset U$.

Theorem 14 — Let X be an almost p-regular Hausdorff space. Then the following are equivalent:

- (a) X is pre-Urysohn closed
- (b) Every pre-Urysohn cover \mathcal{U} of X has a finite subfamily \mathcal{U}^* such that the closures of whose members cover X.
- (c) Every open pre-Urysohn filter base has non-empty adherence.

PROOF (a) \Rightarrow (b): Let (X, \mathcal{I}) be pre-Urysohn closed and \mathcal{U} a pre-Urysohn cover of X. Suppose that for no finite subfamily of \mathcal{U} , the closures of the members of the subfamily cover X. Let $p \notin X$ and $Y = X \cup \{p\}$. Let $\mathcal{I}^* = \mathcal{I} \cup \{\{p\}\} \cup \{p\}\}$

$$\begin{pmatrix} X - \bigcup_{i=1}^{n} \operatorname{cl} U_i \end{pmatrix}$$
 }. Then \mathcal{J}^* is a topology on Y which is pre-Urysohn. For, if $x, y \in Y$ with $x \neq y$, $\neq p$ there exist disjoint \mathcal{J} -preopen sets, hence \mathcal{J}^* -preopen sets H and K containing x and y respectively such that

 $p \operatorname{cl}_X H \bigcap p \operatorname{cl}_X K = \emptyset$ [as $X \in \mathcal{I}^*$, $p \operatorname{cl}_X H = p \operatorname{cl}_X H \bigcap X$,

$$p \operatorname{cl}_X K = p \operatorname{cl}_{X^*} K \cap X$$

so $p \operatorname{cl}_{X'} H \cap p \operatorname{cl}_{X'} K = \emptyset$.

Suppose y = p. Since U is a pre-Urysohn cover of X, there exists a preopen cover \mathcal{V} of X such that for each $V \in \mathcal{V}$, there exists a $U_v \in U$ such that p cl $V \subset U_v$. Let $x \in V \in \mathcal{V}$. Then (X - p cl $U_v)$ is a preopen set containing y = p.

Since $U_v \subset p$ cl U_v , $(X - p \text{ cl } U_v) \subset (X - U_v)$ which implies $p \text{ cl } (X - p \text{ cl } U_v) \subset (X - U_v)$ as $(X - U_v)$ is closed. As $p \text{ cl } V \subset U_v$, $p \text{ cl } V \cap (X - U_v) = \phi$ and $p \text{ cl } V \cap p \text{ cl } (X - p \text{ cl } U_v) = \phi$. Thus $V \text{ and } (X - p \text{ cl } U_v)$ are the disjoint preopen sets containing x and p such that $p \text{ cl } V \cap p \text{ cl } (X - p \text{ cl } U_v) = \phi$. So (Y, \mathcal{I}) is pre-Urysohn. But X is not a closed set of Y, since $p \in \text{cl}_X X$. This is a contradiction.

(b) \Rightarrow (c): Let \mathcal{F} be an open pre-Urysohn filter base without any adherent point. Then $\mathcal{U} = \{X - \operatorname{cl} F; F \in \mathcal{F}\}$ is an open cover of X. Indeed \mathcal{U} is a pre-Urysohn cover of X. Let $x \in X$. Since x is not an adherent point of \mathcal{F} , there exists a preopen set V_x such that p cl $V_x \cap$ cl $F_x = \emptyset$ for some $F_x \in \mathcal{F}$. Therefore there exists an $(X - \operatorname{cl} F_x) \in \mathcal{U}$ such that p cl $F_x \subset (X - \operatorname{cl} F_x)$. Hence $\mathcal{V} = \{V_x \mid x \in X, \ p \in V_x \subset (X - \operatorname{cl} F_x)\}$ is a preopen cover of X such that for each $V \in \mathcal{V}$ there exists a $U \in \mathcal{U}$ such that p cl $V \subset U$. So by (b),

$$X = \bigcup \{ \text{cl } (X - \text{cl } F_{x_i}) \mid i = 1, 2, ..., n \}$$

$$\subset \bigcup \{ \text{cl } (X - F_{x_i}) \mid i = 1, 2, ..., n \}$$

$$= \bigcup \{ (X - F_x) \mid i = 1, 2, ... \}$$

since each F_{x_i} is open. Thus $X = X - \bigcap \{F_{x_i} \mid i = 1, 2, ..., n\}$ which means that $\bigcap_{i=1}^{n} F_{x_i} = \emptyset$ which is a contradiction to the fact that \mathcal{F} is a filter base. Thus (c) is proved.

(c) \Rightarrow (a): Let X be an almost p-regular Hausdorff space which is not pre-Urysohn closed. Let Y be a pre-Urysohn space in which X is embedded. If possible suppose that X is not a closed subset of Y. Let $p \in (\operatorname{cl} X - X)$ and let $\mathcal{U} = \{U \cap X \mid U \text{ is an open neighbourhood of } p \text{ in } Y\}$. Since $(U \cap X)$ is open it is preopen in X. So there exists a regular open set G such $(U \cap X) \subset G$ and cl $(U \cap X) = \operatorname{cl} G$. Let $\mathcal{U}' = \{G \subset X \mid G \supset U \cap X, G \text{ is regular open in } X, U \text{ is a neighbourhood of } p \text{ in } Y\}$. Then \mathcal{U}' is a regular open filter base in X. Since X is almost p-regular and Hausdorff it is pre-Urysohn and \mathcal{U}' is a pre-Urysohn filter base in X. Now \mathcal{U}' has no adherent point in X. For if $x_0 \in X$ is an adherent point of \mathcal{U}' , for every preopen set U_{x_0} containing x_0 , p cl $U_{x_0} \cap \operatorname{cl} G = \emptyset$ for every $G \in \mathcal{U}$. This implies that cl $U_{x_0} \cap \operatorname{cl} G = \emptyset$ which is a contradiction to the hypothesis that X is almost p-regular Hausdorff. So \mathcal{U}' has no adherent point, which is a contradiction. Thus the proof is complete.

Theorem 15 — Every closed-open subset of an almost p-regular Hausdorff pre-Urysohn closed space is pre-Urysohn closed.

PROOF: Let X be a pre-Urysohn closed space which is almost p-regular Hausdorff and let $Y \subset X$ be closed-open subset. Let $\mathcal F$ be a pre-Urysohn filter base in Y with empty adherence. Since Y is closed-open it is regular open and hence is almost p-regular. As X is Hausdorff, Y is Hausdorff. So Y is almost p-regular Hausdorff and hence pre-Urysohn. Also \mathcal{F} is an open filter base in X. Now we claim that \mathcal{F} is a pre-Urysohn filter base in X. If every point of X is an adherent point of \mathcal{F} in X, then \mathcal{F} is vacuously pre-Urysohn in X. Let x be a point of X which is not an adherent point of \mathcal{F} in X. Let every preopen subset U of X containing x have nonempty intersection with every $F \in \mathcal{F}$. That is, every preopen set containing x has nonempty intersection with Y. So $x \in p$ cl (Y) = Y as Y is preclosed. Now $U \cap Y$ is preopen in Y as Y is open in X and $x \in U \cap Y$. Thus $U \cap Y$ is a preopen subset of Y containing x, having non-empty intersection with every $F \in \mathcal{F}$. Also, Y being open, every preopen subset of Y is of the form $U \cap Y$, where $U \in PO(X)$. Hence every preopen set of Y containing x intersects every member $F \in \mathcal{F}$ which is a contradiction to the fact that \mathcal{F} is a pre-Urysohn filter base in Y. Y being closed, \mathcal{F} cannot have an adherent point in X, since it has empty adherence in Y. This is a contradiction. Hence every pre-Urysohn filter base in Y has non-empty adherence in Y and Y, therefore is pre-Urysohn closed.

5. p-REGULAR CLOSED SPACES

In this section along with the characterization of p-regular closed spaces, a few properties of such spaces are studied.

Definition 8 — A p-regular space (X, \mathcal{J}) is said to be p-regular closed if it is closed in every p-regular space in which it can be embedded.

Definition 9 — A cover \mathcal{U} is said to be p-regular cover if there exists a preopen cover \mathcal{V} such that preclosures of whose members refine \mathcal{U} .

Definition 10 — A filter base is said to be a p-regular filter base if it is equivalent to a preclosed filter base.

Theorem 14 — The following are equivalent for a p-regular space X.

- (1) X is p-regular closed.
- (2) Every open p-regular cover has a finite subcover.
- (3) Every open p-regular filter base has non-empty adherence.

PROOF (1) \Rightarrow (2): Let \mathcal{U} be an open p-regular cover of X and suppose that \mathcal{U} does not have a finite subcover. Let $Y = X \cup \{p\}$ where $p \notin X$. Let

$$\mathcal{I}^* = \mathcal{I} \cup \left\{ \left\{ p \right\} \cup \left(X - \bigcup_{i=1}^n U_i \right) : U_i \in \mathcal{U} \right\}.$$

Then \mathcal{J}^* is a topology on Y and (Y, \mathcal{J}^*) is p-regular.

Case (i) — Let $x \in Y$ where $x \neq p$ and B be a \mathcal{J}^* -closed set containing neither x nor p. Then (Y - B) is a \mathcal{J}^* -open set containing both x and p. Since \mathcal{U} is a p-regular cover, there exists a preopen cover \mathcal{V} of X such that $\{p \in V; V \in \mathcal{V}\}$ is a refinement of \mathcal{U} . Since $x \in X$, $x \in V$ for some $V \in \mathcal{V}$. Now $x \in Y - B$ where (Y - B) is an open set containing p. So $(Y - B) = \{p\}$ $\bigcup \left\{ \left(X - \bigcup_{i=1}^{n} U_i \right) | U_i \in \mathcal{U} \right\}$. Therefore $x \in V \cap \left\{ \left\{ p \right\} U \left(X - \bigcup_{i=1}^{n} U_i \right) \right\}$ which is a preopen set in \mathcal{J}^* , being the intersection of an open set and a preopen set. Also $(Y - B) = \{p\}$ $\bigcup \left(X - \bigcup_{i=1}^{n} U_i \right) = Y - \left(\bigcup_{i=1}^{n} U_i \right)$. Hence $B = \bigcup_{i=1}^{n} U_i$. Thus $V \cap \{p\}$ $\bigcup \left(X - \bigcup_{i=1}^{n} U_i \right)$ and $\bigcup_{i=1}^{n} U_i$ are disjoint \mathcal{J}^* -preopen sets containing x and B respectively.

Case (ii) — Suppose that x = p and B is a \mathcal{J}^* -closed set not containing p. Then $(Y - B) = \{p\} \cup \left(X - \bigcup_{i=1}^n U_i\right)$ is a \mathcal{J}^* -open and hence a preopen set containing p and $\bigcup_{i=1}^n U_i$ is a \mathcal{J}^* -open set containing x.

Case (iii) — Suppose $x \neq p$ and let B be a closed set continuing p. (Y - B) is open, not containing p and therefore a \mathcal{J} -open set containing x. As X is p-regular, there exists a preopen set V containing x such that $x \in V \subset p$ cl $V \subset (Y - B)$. As X is open, V is preopen in Y. Thus (Y, \mathcal{J}^*) is p-regular.

Since every open set containing p intersects X, X is not closed in Y. This is a contradiction. So U has a finite subcover.

 $(2)\Rightarrow (3):$ Let $\mathcal F$ be an open p-regular filter base without an adherent point in X. Then $\{X-\operatorname{cl} F\mid F\in\mathcal F\}$ is an open cover of X. If $x\in X$ and x is not an adherent point of $\mathcal F$, then $x\notin\operatorname{cl} F_x$ for some $F_x\in\mathcal F$. Since X is p-regular there exists a preopen set V_x containing x such that $x\in V_x\subset p$ cl $V_x\subset (X-\operatorname{cl} F_x)$. Thus $\{V_x; x\in X \text{ and } p\text{ cl } V_x\subset X-\operatorname{cl} F_x\}=\mathcal V$ is a preopen cover of X such that $\{p\text{ cl } V_x; x\in X\}$ is a refinement of $\{X-\operatorname{cl} F_x\mid F_x\in\mathcal F\}$. Hence $\{X-\operatorname{cl} F_x\mid F_x\in\mathcal F\}$ is a p-regular cover of X. Therefore there exist finitely many members $F_1,F_2,...,F_n$ of

 $\mathcal F$ such that $X \bigcup_{i=1}^n (X-\operatorname{cl} F_i) \subset \bigcup_{i=1}^n (X-F_i) = X-\bigcap_{i=1}^n F_i$ so that $\bigcap_{i=1}^n F_i = \emptyset$, a contradiction to the fact that $\mathcal F$ is a filter base.

Theorem 17 — Let X be a p-regular closed space. Let $Y \subset X$ be a closed-open subset. Then Y is p-regular closed.

PROOF: Every semi-open subset of a p-regular space is p-regular. Since Y is closed-open, it is semi-open and therefore p-regular. We need only show that $(Y, \mathcal{I}/Y)$ possesses that every open p-regular cover has a finite subcover. Let \mathcal{U} be an open p-regular cover of Y. Let $\mathbf{H} = \{H \subset X, U = H \cap Y, U \in \mathcal{U}\} \cup (X - Y)$. Then \mathbf{H} is an open p-regular cover of X is seen by the following argument. Since \mathcal{U} is a p-regular cover of Y, there exists a preopen cover \mathcal{V}' of Y such that $\{p \in V \mid V \in \mathcal{V}'\}$ refines \mathcal{U} . Y being open, each $V \in \mathcal{V}'$ is a preopen subset of X. Now (X - Y) is both open and closed in X. Hence $\mathcal{V} = \mathcal{V}' \cup (X - Y)$ is a preopen cover of X such that preclosures of members of \mathcal{V} refine \mathbf{H} . Thus \mathbf{H} is a p-regular cover of X. As Y is open, \mathbf{H} is an open p-regular cover of X. Hence $X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ for some finite subfamily $H_1, H_2, ..., H_n$ of \mathbf{H} . Then $H_1 = H_1 = H_1 = H_2 = H_1 = H_2 =$

Theorem 18 — A continuous image of a p-regular closed space onto a regular space is regular-closed.

PROOF: Let $f: X \to Y$ be a continuous mapping from a p-regular closed space X to a regular space Y. Let $\mathcal U$ be a regular cover of Y. Then $\mathcal U$ is open. Let $\mathcal V$ be a closed refinement of $\mathcal U$. Since f is continuous $\{f^{-1}(U), U \in \mathcal U\}$ is an open cover of X. Also f being continuous, $\{f^{-1}(V), V \in \mathcal V\}$ is a closed, hence preclosed refinement of X. It is also a preclosed cover of X. Thus $f^{-1}(\mathcal U)$ is an open regular

cover of X. Hence
$$X = \bigcup_{i=1}^n f^{-1}(U_i)$$
 for a subfamily $U_1, U_2, ..., U_n$ of U and $Y = f(X)$

$$= \bigcup_{i=1}^{n} U_i$$
. So Y is regular closed.

6. As an application of pre T_2 -closed spaces, we prove that in the category of pre T_2 -closed extremally disconnected Hausdorff spaces and continuous maps, the projective objects are finite spaces.

If (X, \mathcal{J}) is locally pre T_2 -closed extremally disconnected Hausdorff space and (X^*, \mathcal{J}^*) is any one point pre T_2 -closed extension, then $\mathcal{J}^* \subset \mathcal{J}^*$ if \mathcal{J}^* is the projective maximum topology. If (X^*, \mathcal{J}^*) is extremally disconnected Hausdorff space, then (X^*, \mathcal{J}^*) is pre T_2 -closed.

Theorem 19 — In the category of pre T_2 -closed extremally disconnected Hausdorff spaces and continuous maps, the projective objects are finite spaces.

PROOF: That X is projective when X is finite is obvious. Conversely, if X is projective, let us show that X is discrete so that it is finite.

Suppose X is not discrete. Then there exists a point $a \in X$ such that a is not isolated. Let $Y = X - \{a\}$. Let π be a point not in $Y \times N^*$ where $N^* = N \cup \{w\}$ is the one point compactification of N which is discrete. Let $A = (Y \times N^*) \cup \{\pi\}$. Let us introduce a topology $\mathcal U$ on A as follows.

- (i) Let $Z = (x, n) \in Y \times N$. Basic neighbourhoods of Z in A are of the form $G \times \{n\}$ where G is an open neighbourhood of x in Y. For $(x, w) \in Y \times \{w\}$, basic neighbourhoods of it in A are of the form $G \times [n, w]$ where G is an open neighbourhood of x in Y and [n, w] is such that $N^* [n, w]$ is finite.
- (ii) If $Z = \pi$, basic open neighbourhoods of it in A are of the form $(Q \times N) \cup \{\pi\}$ where Q is a deleted open neighbourhoods of a, (that is, $a \notin Q$, and $Q \cup \{a\}$ is open in X).

The space (A, U) is clearly a Hausdorff space.

(A, U) is pre T_2 -closed — Since $\{a\}$ is closed in X, Y is open in X. As X is pre T_2 -closed, Y is locally pre T_2 -closed by Theorem (11). Since N^* is a compact space, $Y \times N^*$ is locally pre T_2 -closed by Theorem (10). If we write, $B = Y \times N^*$ and if the topology of $Y \times N^*$ is denoted by τ , then (B, τ) is locally pre T_2 -closed Hausdorff space. Now for an open set U and a point $Z \in U, U \in U_Z$, where U_Z denotes the neighbourhoods system at Z. Also cl $(Q \times \{n\}) = \text{cl } Q \times \{n\}$ where cl Q is open in Y. [Since Y is an open subspace of X, Y is extremally disconnected] and cl $\{G \times [n, w]\} = \text{cl } Q \times [n, w]$ since $w \in [n, w]$ and cl $(Q \times N \cup \{\pi\}) = \text{cl } Q \times N^* \cup \{\pi\}$ we find that closure of an open set in A is open in A. Since U is a Hausdorff topology, $B = A - \{\pi\}$ is open in A and hence B is extremally disconnected. So (B, τ) satisfies the conditions of the Theorem 13. Also we see that $\text{cl}_A(B) = A$ and so (A, U) is a one point extension of (B, τ) .

To prove (A, \mathcal{U}) is pre T_2 -closed, let us start with an open neighbourhood of a in X, say, $Q \cup \{a\}$. Since (X, \mathcal{I}) is a one point pre T_2 -closed extension of $(Y, \mathcal{I}/Y)$ $Q \cup \{a\}$ is an open neighbourhood of a in $X = Y^* = Y \cup \{a\}$ endowed with the projective maximum topology $(\mathcal{I}/Y)^\#$. Hence $Y - \operatorname{int}_Y \operatorname{cl}_Y Q$ is pre T_2 -closed relative to Y. Thus $B - \operatorname{int}_B \operatorname{cl}_B (Q \times N) = \operatorname{cl}_B (B - \operatorname{cl}_B Q \times N) = \operatorname{cl}_B (B - \operatorname{cl}_Y Q \times N^*) = (Y - \operatorname{int}_Y \operatorname{cl}_Y Q) \times N^*$ which is pre T_2 -closed relative to B. Thus $(Q \times N) \cup \{\pi\}$ is open in A endowed with the projective maximum topology on A. Thus $\mathcal{U} \subset \mathcal{I}^\#$. Since $(A, \mathcal{I}^\#)$ is pre T_2 -closed, (A, \mathcal{U}) is pre T_2 -closed.

Now let us define a topology \mathcal{U}' on $A = Y \times N^* \cup \{\pi\}$ as follows. Let neighbourhoods of $Z \in Y \times N^*$ be as in (A, \mathcal{U}) and a basic \mathcal{U}' -open neighbourhood of π be of the form $(Q \times N^*) \cup \{\pi\}$ where Q is an open deleted neighbourhood of a.

By argument similar to those in the previous paragraph, it follows (A, \mathcal{U}') is pre T_2 -closed as (A, \mathcal{U}) is pre T_2 -closed $[i:(A, \mathcal{U}) \to (A, \mathcal{U}')]$ is continuous because $i^{-1}(Q \times N^*) \cup \{\pi\} = (Q \times N) \cup \{\pi\} \cup (Q \times \{w\})$ is open in (A, \mathcal{U}) , by Theorem 8.

Define $f: X \to (A, U)$ such that $f(a) = \pi$, f(y) = (y, w) for each $y \in Y$. Then $f^1(Q \times N^*) \cup \{\pi\} = Q \cup \{a\}$ is open. Again $f^1(Q(y) \times N^* - L) = Q(y)$ where Q(y) denotes an open neighbourhood of y and L is a finite subset of N. Thus $f^1(Q(y) \times N^* - L)$ is open and f is continuous. Since X is projective, there is a continuous mapping g such that $i \circ g = f$. Clearly $g(a) = \pi$, otherwise, $f(a) \neq \pi$. Similarly g(y) = (y, w) for each $y \in Y$. Then $g^{-1}(Q \times N) \cup \{\pi\} = \{a\}$ which is not open and this violates the continuity of g.

Thus X is discrete. Since X is pre T_2 -closed X is finite.

REFERENCES

- P. Alexandroff and H. Hoff, Topologie I Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Bd. 45 Springer, Berlin 1935.
- 2. S. P. Arya and M. P. Bhamini, Indian J. pure appl. Math. 15 (1984), 89-95.
- 3. Bourbaki, Topologie ginerale (4th ed.) Actualites Sci. Ind. No. 1142, Hermann, Paris 1965.
- 4. D. E. Cameron, Trans. Am. Math. Soc. 160 (1971), 229-48.
- S. N. El-Deeb, I. A. Husanein, A. S. Mashour and T. Noiri, Bull. Math. de la Soc. Sci. Math. (R. S. R.) Tome 27 (75) (4) (1983), 311-15.
- 6. C. T. Liu, Trans. Am. Math. Soc. 130 (1968), 86-104.
- A. S. Mashour, M. E. Abd El-Monsef and S. N. El-Deele, Proc. Math. Phys. Egypt 53 (1982), 47-53.
- 8. J. R. Porter and J. D. Thomas, Trans. Am. Math. Soc. 138 (1969), 159-60.
- 9. T. G. Raghavan and I. L. Reilly, Indian J. Math. 28 (1986).
- 10. T. Thompson, Proc. Am. Math. Soc. 60 (1976), 335-38.