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In this paper, we obtain some generalizations of H-closed spaces using preopen sets
and their properties. Besides these, we have extended the results of Arya and
Bhamini“ to the p-regular and pre-Urysohn spaces.

1. INTRODUCTION

The notion of preopen sets was first introduced by Mashour er al.”. Subsequently
much has been done in the direction of generalizations of separation axioms, covering
axioms and mappings using preopen sets. The concept of H-closedness was first
introduced by Alexandroff and Urysohn' and Bourbaki® characterized minimal
Hausdorff and H-closed spaces. With particular reference to H-closed spaces. Liu®
and Porter and Thomas® independently proved that in the category of H-closed spaces
and continuous maps, the projective objects are finite spaces and injective objects
are singletons.

Raghavan and Reilly®, as a continuation of the study of properties of HP-closed
[Hausdorff P-spaces] spaces initiated by Cameron* have shown that the class of
HP-closed spaces has a projective maximum and a projective minimum. Further they
have shown that in the category HP-closed spaces and continuous maps, the
projective objects are discrete spaces.

Thompson!® generalized H-closed spaces using semi-open sets in the name of
S-closed spaces. Arya and Bhamini’> have introduced S-Urysohn closed and s-regular
closed spaces using semi-separation axioms and filters using semiopen sets and have
given characterizations of such spaces.

With the above works in the background the present paper is an attempt to
generalize H-closed spaces by using preopen sets. In doing so, we adopt the method
employed by Raghavan and Reilly®. Analogues of S-Urysohn closed and s-regular
closed spaces using preopen sets are studied along the lines of Arya and Bhamini?.

Throughout this paper (X, J) represents a topological space without any
separation axiom assumed on it. By nbd we mean neighbourhood and cl A represents
the closure of a set A CX and int A, denotes the interior of a set A CX.
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In section 2, we furnish necessary preliminaries related to preopen sets. Section
3 deals with pre T,-closed spaces and locally pre T,-closed spaces and their one
point extensions. Sections 4 and 5 are devoted to pre-Urysohn-closed and p-regular
closed spaces respectively. As an application of pre T,-closed spaces, it is shown
that in the category of pre T,-closed spaces and continuous maps, the projective
objects are finite spaces.

2. PRELIMINARIES

In this section, some basic definitions and results regarding preopen sets and
related concepts are presented.

A subset A CX is called preopen if A C int cl A and the complement of a
preopen set is called preclosed. The family of all preopen sets is denoted by PO(X)
and that of preclosed sets by PF(X). For a subfamily {B;|iEI} C POW),
UB,€EPOX). For A C Y C X and A € PO(X), A €EPO(Y) whenever Y is open in
X. For A CY C X and A € PF(Y), A € PF(X) whenever Y € PF(X).

If U€ PO(X), V&€ PO(U) then V&€ PO(X). For any subset A C X, the conditions
that A is preopen, A is the intersection of a regular open set and a dense set and
A is the intersection of an open set and a dense set are equivalent. The preinterior
of a subset A C X is the union of all preopen sets which are contained in A and
it is denoted by pint A or A,. The intersection of all preclosed sets containing a set

A is called the preclosure of A and it is denoted by pcl A or A*. The preinterior of
a set A is preopen and its preclosure is preclosed. For AC X, CX and X, an open
set in X p cly (A)=p cl A{) X, where p cly A is the preclosure of A in X, For
a product space X = X;xX,, ACX is in PO(X) if and only if A = A; xA; where
Al EPO(XI) and AzEPO(Xz)

A mapping f : X — Y is precontinuous if f! (V)€ PO(X) for every open set V
of Y and f is preopen whenever {U) € PO(Y) for every open set V of X.

A space X is called pre T, if for every pair of distinct points x and y of X,

there exist disjoint preopen sets U and V containing x and y respectively. A p-regular
space is one in which a point x € X and a closed set F not containing x are separated
by disjoint preopen sets. A space X is called pre Urysohn if for any two distinct
points x and y, there exist preopen sets U and V containing x and y respectively

such that pcl U () pcl V=¢. An almost p-regular space X is defined as one in which

a point x €X and a regular closed set F not containing x are separated by preopen
sets.

We quote the following theorems, without proof, as they are very useful in
studying p-regular closed and pre Urysohn-closed spaces.

Theorem A — For a space X the following are equivalent :

(1) X is p-regular
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(2) For each xE€X and each open set U of X containing x, there exists
VEPOWX) such that xEVCp cl VCU.

3) For each closed set F of X, M {p ¢l V| FCVEPOX)} = F.

() For each subset A of X and each open set U of X such that A () U= ¢,
there exists V& PO(X) such that A\ V=¢ and p ¢l VCU.

(5) For each nonempty subset A of X and each closed set F of X such that
AMV=¢, there exist V,WEPOX) such that A(\V=¢,
FCWand V(M W=¢.

Theorem B — Every almost p-regular Hausdarff space is a pre Urysohn space.

Theorem C — For a space X the following are equivalent.

(a) X is almost p-regular

(b) For each point x €EX and a regular open set G containing x, there exists a
preopen set U such that xEUCp ¢l UCG.

(c) Every regular closed set F is the intersection of all preclosed
preneighbourhoods of F.

(d) For every set A and a regular open set B such that A () B = ¢, there exists
a preopen set U such that

AYU=¢ and p cl UCB.

(¢) For every nonempty set A and a regular closed set B such that A () B=¢,

there exists disjoint preopen sets G and H such that A(\G=¢ and
BCH.

3. ONE POINT EXTENSIONS

In this section, analogous to H-closed spaces, we define pre T,-closed spaces
and by developing the necessary preliminaries, we prove the existence of a
projective maximum and a projective minimum in the class of one point extensions
for a locally pre T,-closed extremally disconnected Hausdorff space.

Definition 1 — Let (X, J) be a topological space. Let A CX. Then (i) A is said
to be pre T,-closed relative to X if and only if every preopen cover U of A has a
finite subfamily U’ C U such that A cU {cl U | U € W'}.

() A is said to be a pre T,-closed set if and only if (4, J/A) is pre Tp-closed.

Example 1 — Let (X, J) be a topological space with the indiscrete topology.
Every subset of X is preopen and dense in X. So for every preopen cover U and U €
U, cl U = X and (X, J) is pre T»-closed.
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Example 2 — Consider (X, ) with the cofinite topology. Every infinite set is
preopen and dense in X. Hence (X, 7) is pre T,~closed.

Definition 2 — A space (X, J) is said to be locally pre T,-closed if for each
x€X and an open set U containing x, the closure of U is pre T,-closed.
Theorem 1 — Let (X, 7) be a topological space. Then

(i) if A CX is pre T,closed relative to X, then A is closed in X, if X is
Hausdorff.

(ii) if A CX is an open set, A is pre T,-closed relative to X if and only if
A is pre T,-closed set.

PROOF OF (i) : Let x€X~A. Since X is a Hausdorff space, there exist for each
y€EA, open neighbourhoods U, and V, of x and y respectively such

that U, () V,=¢. Then {V,|yEA} is an open cover hence a preopen cover of A.
Since A is pre T,-closed, there exists a finite subset BC A such that A C U {cl
V,lyEB}. Let U = N {U,|y €B}. Then U is an open neighbourhood of x such
that A(YU=¢. Thus cl A = A and hence A is closed.

PROOF OF (ii) : Assume A to be a pre T,-closed set. Then (A, J/A) is pre
T,-closed. Let {U,|y €A} be a preopen cover of A with U, € PO(X) for every
YEA. Let Vy=A M U, Since A is open, V, € PO(A). So {V, |y EA} is a preopen
cover of A in A. As (A, J/A) is pre T,-closed, there exists a finite subset BC A such
that A cU {cl, V,|yeBCA}.

Now cl, V,=clV,ACclU, So AC U {clU,|yEBCA}. Thus A is pre T

closed relative to X. As A is open, every preopen subset of A is preopen in X and
hence the converse part of (ii) is obvious,

Theorem 2 — let (X, J) be a topological space. Then the following are
equivalent.

(i) X is pre T,~closed.
(ii) The closure of an open subset of X is pre 7,-closed relative to X.
(iii) Every closed-opeh subset of X is pre T,-closed set.
PROOF OF (i) = (ii) : Let U be an open subset of X. Let A = cl U. Let U be
a preopen cover of A. Then D = U U ‘(X —~ A) is a preopen cover of X so that

there exists a finite number of members V, i = 1, 2, .., n in D such that X
UfdVili=12 .,n V,ED}) IfnoVis (X - A) then A CU {cl V;|i
1,2 .,n V,EU} f VimX-A,since UCintcl U=int A =X ~cl (X - A)
=X -cavwclU{avVv|i=12 .,k-1,k+1,..,n V,EU}
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A=dUcU{dV,|i=1,2 ..,k-1,k+1, ..,n V,EU} as the right-hand
side is closed. Thus A = cl U is pre T,-closed relative to X.

PROOF OF (ii) => (iii) : Let A be open and closed. Then A = cl A. So A is pre
T)-closed relative to X. By Theorem (1), A is pre Tr-closed set.

PROOF (iii) = (i) : Immediate.

Remark 1 : If X is extremally disconnected in the above theorem, then the closure
of an open set is pre T,-closed set whenever it is pre Ty-closed relative to X.

Theorem 3 — Let (X, J) be a topological space and A CX. Then A is pre
T,-closed if and only if every regular open cover has a finite subcover whose closures
cover A.

PROOF : Let A be pre Tr-closed. Let {V,/o. €I} be a regular open cover of A
with each V, € RO(X) where RO(X) represents the set of all regular open séts of X.
Then {V,/a €1} is an open, hence pre open cover of A. As A is pre T,-closed,

AcU {cl V;|i =1, 2, .., n}. Conversely, let {U,/a €I} be a preopen cover of

A where U, € PO(X). Since U, € PO(X), U, Cint cl U, for every a. Now W, = int
cl Uy/a €1} is a regular open cover of A with W, € RO(X) and hence for a finite

subcollection say W, W, ... Wo ,LACU {cl W, |i = 1,2, .., n} = U {cl (int cl
U)li=12 ..np=U{dU,|i=12 .,n}.
Thus A is pre T>-closed.

Corollary 1 — A space (X, J) is pre T,-closed if and only if every regular open
cover has a finite subcover the closures of whose members cover X.

Theorem 4 — If B is open preclosed subset of A which is open pre T»-closed
relative to X, then B is pre T)-closed relative to X.

PROOF : Let U {U,|y €B} be a preopen cover of B relative to X. Then 4 =
U \UW where W()A=(A-B), is a preopen cover of A [since A is open and
(A - B) is preopen in A, (A — B) € PO(X); as W is preopen W {1} A € PO(X)] for
a preopen set WE PO(X). As B is open in A, (A — B) is closed in A. Thus (A — B)
is closed and preopen in A. Since A is pre T,-closed, AC U {d U,|U,€ A C A,

A' is a finite subfamily of A}. If no U, is W, scU {d U,|U,€ A C U} If
some U,=W, then B{)cl W = ¢. For if xEB(\cl W, B being open
B(\Ww=¢. But (A — B) = A [\ W, a contradiction. So B{clW=¢, (A - B) C
cl Wand BCU {cl U,|U,€ A’ - W}. Thus B is pre T,-closed relative to X.

Theorem 5 — Let B CACX and A be open in X. Then B is pre T,-closed
relative to X if and only if B is pre T>-closed relative to A.

PROOF : Let C = {U,|y € B} be a preopen cover of B such that y € U,. Since
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A is open {U, NA| U,€ C} is a preopen cover of B in the relative topology of
A. Since B is pre T,-closed relative to A, BC U {ck (U, A)|yEC, CCBis a
finite subset of B}. cl(U,NA)=cl (U,MNANACU, So BcU
{cl U,|yE€C} and B is pre T,-closed relative to X. Conversely, let {V,|y E B} be

a preopen cover of B with V,&€PO(A) for every y. As A is open in X, each
V, € PO(X). Thus {V,|y € B} is a preopen cover of B relative to X. Since B is pre

T)-closed relative to X, BcU {cl V,|yEDCB; D is finite subset of B}.
Now B =B{lAcU {d V,lyeDp} NA=U {d U,NAlyeD} = U i, V|
y€ED}.
Hence B is pre T,-closed relative to A.

Theorem 6 — Let {A;A;CX; i =1, 2, .., n} be pre T)-closed relative to X.
Then U {A; i =1, 2, .., n} is pre T,-closed relative to X.

PROOF : Let {U;:jE€1I} be a preopen cover of A; for i = 1, 2, ..., n. Since
each A; is pre T,-closed, A,~CU {cl U;lj = 1, 2, .., n} which shows that

n B

n i
A=UJACUUau;,

i=1 i=1j=1
Thus there exists a finite subfamily {U,; a = l; 2, .., k} such that AC U {cl
U,la =1, 2, ..., k} for a preopen cover {U,, a = 1, 2, ...} of A.

Theorem 7 — Let X be pre T)-closed space and Y a compact space. Then the
product X xY is pre T,-closed.

PROOF : let U be a regular open cover of X xY. For each x€X, {x}
x Y=Y and so is compact. As U is an open cover of {x} xY, a finite number of
members, say, U}‘]-, Jj=12, .., nof U cover {x} xY. In fact we can find an open
set V, containing x such that

{x} xycv,xyclU (Ujlj = 1,2, ., n} [by the tube lemma].

Thus cl (V,xY) = cl V,xYCU {cl U;|j=1,2 ., n}. This shows that int (cl
Voxy) = int o V,xyclU {cU; | j = 1, 2, ., n}. Consider

{W,=intcl V,|xEX}. This is a regular open cover for X. As X is pre T,-closed,
there exists a finite number of members, say W,,W,,..,W, of

{W,=intcl V,|x€ X} such that xcU {ad W, | i =1, 2, .., m} Thus
xxycUdw,xY|i=1,2 ..mpcU@duli=1,2 .. mj=12
..., m). Therefore there exists a finite number of members of U such that
xxyclU {cd Vi|k=1,2 .,m+n V,E U} and XxY is pre Ty-closed.
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Theorem 8 — Let f : X —Y be a continuous surjection. If X is pre T-closed,
so is Y.

PROOF : Let {U,|a €I} be a preopen cover of Y. Since U, is a preopen set
in ¥, U, Cintcl U, for every a €1. Since f is continuous {f! (intcl Uy)|a €I} is
an open, hence preopen cover of X. As X is pre T,-closed, there exists a finite subset
Iy CI such that

xcU {d (Fintc Uy |a €Iy}

Thus
Y = fX) CAU {d £ (intc Uy | e EIp})
= U {fcftintcd Uy |a€ly}
cU {d fF (intcd Uy |a€l, €U {l (int ol Uy)a€ly}

= U {a U Ja€Ek)

as f is a surjection. Thus Y is pre T,-closed.

Proposition 1 — lLet (X, 7) be an extremally disconnected space. Then the
following are equivalent.

(i) X is locally pre T>-closed
(i) Each point of X has a neighbourhood which is pre T--closed.
(iii) Each point of X has a neighbourhood which is pre T>-closed set.
PROOF : Follows by the fact that in an extremally disconnected space, closure
of an open set is open.
Theorem 9 —— Every locally pre T,-closed extremally disconnected Hausdorff
space is regular.
PROOF : Since X is locally pre T,-closed, every x €X has a neighbourhood U
whose closure is pre T,-closed. As X is extremally disconnected ¢l U is open as

well. So for a point x €X and a closed set F not containing x, cl U and X — cl U
separate x and F.

Theorem 10 — Let X be a locally pre T,-closed extremally disconnected

(Hausdorff) space and Y a compact (Hausdorff) space. The product X x Y is locally
pre T,-closed.

PROOF : Since X is locally pre 7T>-closed, each x EX has a neighbourhood U,
whose closure is pre T,-closed. As X is extremally disconnected cl U, is alse open.
So ¢l U, is a pre Ty-closed set. That is, if Z = cl U,, then (Z, J/Z) is a pre T)-closed

space. Thus by Theorem 7, Z xY is pre T,closed. Now U, xY is an open
neighbourhood of (x, y) €Xx Y, ¢l (U, xY) =cl U,xY = Z xY is pre Tr-closed



564 D. SOMASUNDARAM AND V. PADMAVATHY

set. Thus X xY is locally pre T,-closed [cl U, is both open and closed in X, and
hence cl U, xY is both open and closed in X x Y}

In the following we define one point extensions for topological spaces and extend
the same to non-pre T»-closed spaces.

Definition 3. — A topological space (Y, U) is said to be an extension of (X, 7)
if XCY, UX = 9, cly(X) =Y where cly(X) denotes the closure of X in Y. (Y, U)
is a one-point pre T,-closed extension of (X, §) if (¥, U) is an extension of (X, 7);
(Y, U) is pre T)-closed and (Y — X) is singleton.

Theorem 11 — Llet (X, 7) be a Hausdorff space. If (¥, U) is a one-point
Hausdorff pre T,-closed extension of (X, 7) then

(1) X is open in Y.

(2) X is pre Ty-closed if and only if (Y — X) is U-open.

(3) X is locally pre T,-closed.

PROOF : let Y — X = {n}. Since Y is Hausdorff, {n} is closed and X is U
open in Y. Since Y is Hausdorff for each x € X, there exists a U-open neighbourhood
U of x such that x & cly U. Since n & U, and X is U-open, U is open in X. Also
clyU=cly U\ X =clyU. Since Y is pre T,-closed cly U is pre T,-closed relative to
Y by Theorem (2). Since X is open, cly U=cly UCXCY, by Theorem (5), cly U is
pre T,-closed relative to X. Thus X is locally pre T,-closed. If (Y — X) is open

relative to Y, X is closed relative to Y. That is, X is closed open subspace of Y. As
Y is pre T,closed X is pre T,-closed relative to Y by Theorem (2). Since Y is

Hausdorff, X is pre T,-closed relative to Y implies X is closed in Y and {x} is open.
Thus (Y — X) is open.

Definition 4 — Let (X, J) be a topological space. A filter F on X is said to
be an open filter if and only if (1) F C 7, 2) ¢€&F; (3) if {U} C ¥

N W)EF;, (4 UEJ, UDVEF then UE ¥.

iml

Theorem 12 — Let (X, J) be a locally pre T,-closed Hausdorff space which is
not pre T5-closed.

Let x* = x U {n} where n € X. Then

@75 =9U ({n} U V|Ve T} isa Hausdorff topology on X* where F
is a filter generated by {U | U € J, such that (X — U) is pre Ty-closed}. (b) (X.
J") is a one-point pre T,closed extemsion of (X, 7). (c) (X*, J) is the projective
minimum in the set of all one point pre T,-closed extensions of (X, 7).

PROOF : Let a {UCX|UEYJ and (X - U) is pre T,-closed}. Since X is not
pre Trclosed, ¢ . Let U;Ea for i = 1, 2, .., n. Since each (X — U)) is pre
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n n
T,-closed |J (X-U) is pre T,-closed by Theorem (6). But |J X-U) =

i=1 i=1

n n
[X—- N U,-]. So () U;Ec. Hence a is a pre open filter base. Then J° is a

i=1 iwl

Hausdorff fopology on X*. Let x, y €X* with x=y. If x,y € X, there exist disjoint
open sets in X, hence in X°, containing x and y respectively. If x=n, since X is
locally pre T,-closed, x has an open neighbourhood U whose closure is pre T,-closed

relative to X. Consider U and {n} U (X — cl U). These are the required disjoint
J'-open sets containing x and n respectively. Thus (X°, J°) is a Hausdorff space.

X" is pre T)-closed — Consider a J° -pre open cover G of X". There exists a
Go € G such that x € Gy Cinty cly Gy where inty- cly G, is regular open in X~ and
hence open in X°. Since a is a filter base, there exists an open set U such that
{n} UU C inty-cly Gy CJ" (Gy) and (X — U) is pre T,-closed relative to X.
Further, since X is open, {G [} X| GE G} is a preopen cover of (X — U) and there
exist a G;E G, i= 1,23, .., n such that X - U) CU {dy(GND)]i=1,2
wa n} CU {cle Gili = 1, 2, ..., n}. Thus

X={{ntUBux-nciG) U ws Gyi=12 .n

=U{’ GlGEG i=0,1,.,n}
Thus X is pre T,-closed.

Let (Y, T) be any one point pre T,-closed extension of (X, 7). Define

f: Y—X* such that fx) = x for all x&€ X and f{E) = where E=Y-X. Since X is
open in X* and Y, f is the identity map on X and the spaces involved are Hausdorff,
it is enough to verify the continuity of f at E. Indeed if G is a basic open

neighbourhood of m, then G = {x} |J U where (X — U) is pre T,-closed relative to
X. As X is open, (X - U) is pre T)-closed relative to ¥ by Theorem (5). As Y is

Hausdorff (X — U) is closed in Y. So Y — (X — U) = {n} U U is open in Y. Since
F1(G) = {§} U U, fis continuous at E. Thus f is continuous and X* is the projective

minimum.
Theorem 13 — Let (X, J) be a locally pre T,-closed extremally disconnected
Hausdorff space which is not pre T,-closed. Let X* = X U {n} where n & X. Then
@ g -9 U ({n} UU|UE J, (X ~ int cl U) is pre Tyclosed relative to
X} is a Hausdorff topology on X".
®) (X", 7%) is a one point pre T,-closed extension of (X, 7)
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© «, J*) is the projective maximum in the set of all one point pre T,-closed
extensions of (X, 7).

PROOF : let B = {U|UE 4, (X ~ int ¢l U) is pre To-closed relative to X}.
Then as X —int cl U) = cl (X — cl U), ¢l (X - ¢l U) is closed-open subset of X

as X is extremally disconnected. Now ¢ & B, () U,€p for U, (i = 1, 2, ..., n)
i=1

€P. Further if UEP and UCV where VE J then (X — int cl V) C (X-int cl D).

As (X - int cl U) is pre T,-closed relative to X and (X — int cl U) is an open set

of X, (X — int cl U) is pre T,-closed by Theorem (1). Now (X — int cl V) is pre

T,-closed by Theorem (2). Thus VEB and B is an open filter on X.

J* is a Hausdorff topology — Let x,yE€X*. If x=y and x,yEX, then there
exist disjoint open sets in X, hence X*, containing them. If x=m, there exists a
neighbourhood U of x such that ¢l U is pre T,-closed. As X is extremally

disconnected cl U is open and int ¢l U = cl U. Now, the required neighbourhoods
of x and m are U and {n} U (X - int cl U) respectively.

(X*, 9% is pre Ty-closed — Consider a f*-preopen cover G of X°. There exists
a Go& G such that n€ Gy Cinty cly- G, Now  inty-cly- Gy is a J*-open set
containing ® and therefore, we can find UEYJ such that {n}
U UCintycly Gy = U’ (say) with (X — intycly U) pre T»-closed relative to X. Now
{GMNX|GEG} is a IJ-preopen cover of (X - U) as X is open. Since

UCintycly U, X-intyclyU)CX-U), {GX|GEG} is also a cover of
(X —inty cly U). Since (X —intycly U) is pre T,-closed.

X-intycly U) € U (I (G:ND)]i =1, 2 .., n}, GE G}

Now X'= {{n} U intycl,U} U X-intycU). As {n} U U C {ny U
intycl, U C {m} U cl, UCd, U = cly (inty cly G,) = cly G, So

X CeyGoU (U {adyGili =1, 2, .., n, G}}
=U{dGli=0,1,2 .., n GE G}

Thus (X°, 7%) is pre T,-closed.

(X, J%) is the projective maximum — Let (Y, T') be any other one point pre
T5-closed extension of (X, 7). Define f: X —Y by fix) = x for all x€X and

fim)=m where n=Y-X. Since X is Hausdorff X € J*, X& T, and f is the identity
map on X, it is enough to verify continuity of f at,n. Let U be a T -open

neighbourhood of 7. f‘l(U)-(UﬂX)U {n}. Since Y is pre Ty-closed,
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cly(Y—-clyU) is pre T,closed. Now cly(Y-clyU) CXCY where XET. So
cly(Y-cly U) is pre T,-closed relative to X. Now intycly (U () X) =intycly U (M X

so that Y — inty cly U =X - inty cly (U () X). This implies {n} U (U () X) €% Thus
f is continuous.

4. PRE-URYSOHN CLOSED SPACES

This section deals with the definition and characterization of a pre-Urysohn
closed space using filters.

Definition 5 — A pre-Urysohn space X is said to be pre-Urysohn closed if it
is closed in every pre-Urysohn space in which it can be embedded.

Definition 6 — A filter base F is said to be a pre-Urysohn filter base, if
whenever x is not an adherent point of :f, there exists a preopen set U containing
x such that p ¢l U [ clF=¢ for some F €F.

Definition 7 — An open cover U of X is said to be a pre-Urysohn cover if
there exists a preopen cover ¥ of X such that for each VE ¥ there is a UE U
such that p ¢} V CU.

Theorem 14 — Let X be an almost p-regular Hausdorff space. Then the following
are equivalent :

(a) X is pre-Urysohn closed
(b) Every pre-Urysohn cover U of X has a finite subfamily U* such that the
closures of whose members cover X.
(¢) Every open pre-Urysohn filter base has non-empty adherence.
PROOF (a) => (b) : Let (X, J) be pre-Urysohn closed and U a pre-Urysohn cover
of X. Suppose that for no finite subfamily of U, the closures of the members of the
subfamily cover X. Let pX and Y = X U ) Let 57 =3 U {3 U

n
X-{JdU,| }. Then J° is a topology on Y which is pre-Urysohn. For, if
i=1
x,yEY with x=y, =p there exist disjoint J-preopen sets, hence 7*-preopen sets H
and K containing x and y respectively such that

pdyHMNpcxyK=0¢ [as XE J°, p clyH=pcly H( X,
pcyK=pcly K X]

$0 pcyH(Ypcly K=¢.

Suppose y = p. Since U is a pre-Urysohn cover of X, there exists a preopen cover
9 of X such that for each V € ¥, there exists a U, € U such that p cl V CU,.

Let xEVE 9. Then (X — p cl U) is a preopen set containing y = p.
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Since U,Cp cl U, X — p cl U) C(X-U,) which implies p cl (X - p cl U)
C(X-U)as (X-U)isclosed Aspcl VCU,pcd VI ) (X-U)=¢andp cl
VApcd X -pcU)=¢ Thus Vand (X - p cl U) are the disjoint preopen
sets containing x and p such that p ¢l V(pcdX-pclU)=¢. So (¥, ) is
pre-Urysohn. But X is not a closed set of Y, since p € cl,- X. This is a contradiction.

(b) = (c) : Let F be an open pre-Urysohn filter base without any adherent
point. Then U = {X — ¢l F; F € ¥} is an open cover of X. Indeed U is a
pre-Urysohn cover of X. Let x&X. Since x is not an adherent point of ¥, there
exists a preopen set V, such that p cl V, AR F,=¢ for some F, € F. Therefore
there exists an (X — cl F,)€ U such that p ¢l F,C(X~-clF,). Hence V =
{V.|xEX, pclV,C(X-clF,)} is a preopen cover of X such that for each V& ¥
there exists a U € U such that p ¢l V CU. So by (b),

x=U{d@&-dF)li=12 ..,n}

1]

cUfa@x-F)li=1,2, ..,n}

=U{&x-F)li=12 .}

since each Fx.- is open. Thus X = X — N {in | i =1, 2, .., n} which means that

N F, =¢ which is a contradiction to the fact that F is a filter base. Thus (c) is
iml
proved.

(c) = (a) : Let X be an almost p-regular Hausdorff space which is not
pre-Urysohn closed. Let Y be a pre-Urysohn space in which X is embedded. If
possible suppose that X is not a closed subset of Y. Let p& (clX-X) and let U =
{UMX|U is an open neighbourhood of p in Y}. Since (U ()X} is open it is
preopen in X. So there exists a regular open set G such (U (1X) C G and cl (U
X)) =cl G Let U = {GCX|GDU(X, G is regular open in X, U is a
neighbourhood of p in Y}. Then U’ is a regular open. filter base in X. Since X is
almost p-regular and Hausdorff it is pre-Urysohn and U’ is a pre-Urysohn filter base
in X. Now U’ has no adherent point in X. For if xo €X is an adherent point of U',
for every preopen set U, containing xo, p ¢l Uy Ndc = ¢ for every GE U.
This implies that ¢l Uy, Nac = ¢ which is a contradiction to the hypothesis that
X is almost p-regular Hausdorff. So U’ has no adherent point, which is a
contradiction. Thus the proof is complete.

Theorem 15 — Every closed-open subset of an almost p-regular Hausdorff
pre-Urysohn closed space is pre-Urysohn closed.
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PROOF : Let X be a pre-Urysohn closed space which is almost p-regular
Hausdorff and let Y CX be closed-open subset. Let F be a pre-Urysohn filter base
in Y with empty adherence. Since Y is closed-open it is regular open and hence is
almost p-regular. As X is Hausdorff, Y is Hausdorff. So Y is almost p-regular
Hausdorff and hence pre-Urysohn. Also ¥ is an open filter base in X. Now we claim
that ¥ is a pre-Urysohn filter base in X. If every point of X is an adherent point
of F in X, then ¥ is vacuously pre-Urysohn in X. Let x be a point of X which is
not an adherent point of ¥ in X. Let every preopen subset U of X containing x have
nonempty intersection with every F € . That is, every preopen set containing x has

nonempty intersection with Y. So xEpcl(Y)=Y as Y is preclosed. Now U [ Y is
preopen in Y as Y is open in X and xEU ()Y. Thus U () Y is a preopen subset
of Y containing x, having non-empty intersection with every FE& ¥. Also, Y being
open, every preopen subset of Y is of the form U ()Y, where U € PO(X). Hence

every preopen set of Y containing x intersects every member FE F which is a

contradiction to the fact that ¥ is a pre-Urysohn filter base in Y. Y being closed, F
cannot have an adherent point in X, since it has empty adherence in Y. This is a
contradiction. Hence every pre-Urysohn filter base in Y has non-empty adherence
in Y and Y, therefore is pre-Urysohn closed.

5. p-REGULAR CLOSED SPACES

In this section along with the characterization of p-regular closed spaces, a few
properties of such spaces are studied.

Definition 8 — A p-regular space (X, J) is said to be p-regular closed if it is
closed in-every p-regular space in which it can be embedded.

Definition 9 — A cover U is said to be p-regular cover if there exists a preopen
cover V such that preclosures of whose members refine U.

Definition 10 — A filter base is said to be a p-regular filter base if it is
equivalent to a preclosed filter base.

Theorem 14 — The following are equivalent for a p-regular space X.
(1) X is p-regular closed.
(2) Every open p-regular cover has a finite subcover.

(3) Every open p-regular filter base has non-empty adherence.

PrOOF (1) = (2) : Let U be an open p-regular cover of X and suppose that
U does not have a finite subcover. Let ¥ = X U {p} where p& X. Let

]‘:jU[{p}u x-UJ Uu|:veul

im]

Then 7° is a topology on Y and (¥, J7) is p-regular.
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Case (i) — Let x €Y where x=p and B be a J -closed set containing neither
x nor p. Then (Y — B) is a J -open set containing both x and p. Since U is a
p-regular cover, there exists a preopen cover ¥ of X such that {p cl V; VEV} is a

refinement of U. Since xEX, x €V for some V €Y. Now x EY - B where (Y - B)

is an open set containing p. So (Y - B) = {p} U X-UJ U |lUeu .
i=1
Therefore x€ V(N {{p|U| X~ U U; |} which is a preopen set in J°, being the
iml

intersection of an open set and a preopen set. Also (Y - B) = {p}
n n n

Ulx-U Uy = Y - | UU|. Hence B=|J U;. Thus V(){p}
i1 i=1 im1
n n

U[X-UJ U;| and {J U; are disjoint J " -preopen sets containing x and B
i=1 i=1

respectively.

Case (ii) — Suppose that x = p and B is a J *-closed set not containing p. Then

-8 ={} U

n
pand {J U; is a J "-open set containing x.
iw]

x-Uu

im]1

is a 7"-open and hence a preopen set containing

Case (iii) — Suppose x=p and let B be a closed set continuing p. (Y - B) is

open, not containing p and therefore a J-open set containing x. As X is p-regular,
there exists a preopen set V containing x such that xE VCpclVC(Y-B). As X is

open, V is preopen in Y. Thus (Y, J°) is p-regular.

Since every open set containing p intersects X, X is not closed in Y. This is a
contradiction. So U has a finite subcover.

(2) = (3) : Let F be an open p-regular filter base without an adherent point
in X. Then {X - cl F| F €%} is an open cover of X. If x€X and x is not an
adherent point of ¥, then x & cl F, for some F, € ¥. Since X is p-regular there exists
a preopen set V. containing x such that x€V,CpclV,C(X-clF,). Thus
{Vo xEX and p cl V,CX-clF,} = ¥ is a preopen cover of X such that {p cl
Vi;xEX} is a refinement of {X — ¢l F,|F,€ F}. Hence {X — cl F,|F,€ ¥} is
a p-regular cover of X. Therefore there exist finitely many members Fy, Fy, ..., F, of



ON GENERALIZATIONS OF H-CLOSED SPACES 57

n n n n
F such that X |J X-cdF)C ) X-F)=X~ () F;, so that () Fi=¢, a
i=1 =1 i=1 i=1
contradiction to the fact that F is a filter base.

Theorem 17 — Let X be a p-regular closed space. Let YC X be a closed-open
subset. Then Y is p-regular closed.

PROOF : Every semi-open subset of a p-regular space is p-regular. Since Y is
closed-open, it is semi-open and therefore p-regular. We need only show that (Y,
J/Y) possesses that every open p-regular cover has a finite subcover. Let U be an
open p-regular cover of Y. Let H= {(HCX, U=H(\Y, UE U} U (X — Y). Then
H is an open p-regular cover of X is seen by the following argument. Since U is
a p-regular cover of Y, there exists a preopen cover V' of Y such that {p cl V| V
€ V'} refines U. Y being open, each V € 9’ is a preopen subset of X. Now (X
— Y) is both open and closed in X. Hence ¥ = ¥' | J (X-Y) is a preopen cover

of X such that preclosures of members of 1 refine H. Thus H is a p-regular cover
of X. As Y is open, H is an open p-regular cover of X. Hence X =

n
U HUX-Y) for some finite subfamily H,H,, ..,H, of H. Then

il

Y= U HNN=U U .

i=1 i=1

Theorem 18 — A continuous image of a p-regular closed space onto a regular
space is regular-closed.

PROOF : Let f : X — Y be a continuous mapping from a p-regular closed space
X to a regular space Y. Let U be a regular cover of Y. Then U is open. Let 9 be
a closed refinement of 7. Since f is continuous {f!(U), UE U} is an open cover
of X. Also f being continuous, {f!(V), VE ¥} is a closed, hence preclosed
refinement of X. It is also a preclosed cover of X. Thus f1(U) is an open regular

n

cover of X. Hence X = |J f? (U) for a subfamily U,, U,, ..., U, of U and Y = fX)
im1
n

= J U; . So Y is regular closed.
i=1
6. As an application of pre T)-closed spaces, we prove that in the category of
pre T,-closed extremally disconnected Hausdorff spaces and continuous maps, the
projective objects are finite spaces.

If (X, ) is locally pre T,-closed extremally disconnected Hausdorff space and
(X", 77) is any one point pre T»-closed extension, then J° C J* if J* is the projective
maximum topology. If (X°, J%) is extremally disconnected Hausdorff space, then
X', 77 is pre T,-closed.
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Theorem 19 — In the category of pre T,-closed extremally disconnected
Hausdorff spaces and continuous maps, the projective objects are finite spaces.

PROOF : That X is projective when X is finite is obvious. Conversely, if X is
projective, let us show that X is discrete so that it is finite.

Suppose X is not discrete. Then there exists a point ¢ € X such that a is not
isolated. Let Y = X ~ {a}. Let = be a point not in ¥ x N* where N' = N U {w}

is the one point compactification of N which is discrete. Let A = (Y x N*) U {n}.
Let us introduce a topology"u on A as follows.

(i) Let Z = (x, n) €Y x N. Basic neighbourhoods of Z in A are of the form
G x {n} where G is an open neighbourhood of x in Y. For (x, w)
€Y x {w}, basic neighbourhoods of it in A are of the form G x [n, w]
where G is an open neighbourhood of x in Y and [n, w] is such that N
— [n, w] is finite.

(ii) If Z = =, basic open neighbourhoods of it in A are of the form
(Q xN) U {n} where @ is a deleted open neighbourhoods of a4, (that

is, a¢ Q, and Q U {a} is open in X).
The space (A, U) is clearly a Hausdorff space.

(A, U) is pre T)-closed — Since {a} is closed in X, Y is open in X. As X is
pre T)-closed, Y is locally pre T,-closed by Theorem (11). Since N° is a compact
space, ¥ x N* is locally pre T,-closed by Theorem (10). If we write, B = Y xN*
and if the topology of ¥ x N* is denoted by T, then (B, t) is locally pre T,-closed

Hausdorff space. Now for an open set U and a point Z&€U,U &€ U, where Uy
denotes the neighbourhoods system at Z. Also ¢l (Q x {n}) = cl Q x {n} where cl
Q is open in Y. [Since Y is an open subspace of X, Y is extremally disconnected]

and cl {G x [n, w]} = cl Q x [n, w] since w& [n,w] and cl (Q xNU {n}) =
(cl O xN*) U {n} we find that closure of an open set in A is open in A. Since

U is a Hausdorff topology, B = A — {n} is open in A and hence B is extremally
disconnected. So (B, t) satisfies the conditions of the Theorem 13. Also we see that

cly (B) = A and so (A, U) is a one point extension of (B, 1).

To prove (A, U) is pre T,-closed, let us start with an open neighbourhood of
a in X, say, Q U {a}. Since (X, J) is a one point pre T»-closed extension of
, 3/Y) Q U {a} is an open neighbourhood of @ in X = Y* = YU {a} endowed

with the projective maximum topology (J/Y)*. Hence Y ~ intycly Q is pre T,-closed
relative to Y. Thus B—intgclg (@ xN)=clg (B—clg Q@ xN)= clzg(B-clyQxN*) =

(Y—inty clyQ)xN* which is pre T,-closed relative to B. Thus (Q x N) U {n} is

open in A endowed with the projective maximum topology on A. Thus U C J*
Since (A, 9*) is pre T,-closed, (A, U) is pre T)-closed.
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Now let us define a topology U’ on A = YxN*U {n} as follows. Let

neighbourhoods of ZEY x N* be as in (A, U) and a basic U'-open neighbourhood
of m be of the form (Q x N*) U {n} where Q is an open deleted neighbourhood
of a.

By argument similar to those in the previous paragraph, it follows (4, U') is pre
T,-closed as (A, U) is pre T,-closed [i : (4, U) — (A, U’) is continuous because
FQ@xNYU {m} = @xMU {n} U(Qx {w}) is open in (4, U)], by Theorem
8.

Define f : X — (A, U) such that fla) = =, {y) = (v, w) for each y €Y. Then
FHOxNYU {ny = 0 U {a} is open. Again’ f' (Q(y) x N* L) = Q(y) where Q()

denotes an open neighbourhood of y and L is a finite subset of N. Thus
FU(OO)xN*-L) is open and f is continuous. Since X is projective, there is a
continuous mapping g such that i - g = f Clearly g(a) = n, otherwise, fla) = n.

Similarly g(y) = (y, w) for each y €Y. Then g1 (Q x N) U {n} = {a} which is not
open and this violates the continuity of g.
Thus X is discrete. Since X is pre Tp-closed X is finite.
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