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It is well known that F-KKM theorems and coincidence theorems are very useful in
different fields of nonlinear analysis. However their applications are restricted by the
closedness and compactness assumptions of maps and sets. For relaxing the restric-
tions, we introduce the notions of compact closure and compact interior for sets in
topological spaces and the notions of transfer compacily closed-valued (resp., open-
valued) maps. A new H-KKM type theorem is proved in H-spaces. As applications,
some coincidence theorems, fixed point theorems and some existence theorems of
equilibria for generalized games are obtained.

1. INTRODUCTION

The classical Knaster-Kuratowski-Mazurkiewicz (KKM) theorem?* is a basic
result in nonlinear analysis which is equivalent to many important theorems such as
Spemer Lemma, Browder fixed point theorem and Fan’s minimax inequality. Since
KKM theorem was given, the theorem has been generalized in various directions and
has become a very useful tool in treating many sophisticated nonlinear problems from
different fields. The most important generalization is the infinitely dimensional
F-KKM theorem obtained by Fan'6'S, Horvath®® 2!, Bardaro and Ceppitelli'-3, Ding
and Tan'?, Tarafdar?®, Ding®!!, Ding and Tarafdar'’ and Chang and Ma® have proved
some H-KKM type theorems in the H-spaces without linear structure and given many
applications in various area.

However, in the most of above F-KKM and H-KKM type theorems, the
closedness and compactmess assumptions for mappings and sets always restrain their
applications. Recently, by introducing transfer closedness and transfer compact
closedness for mappings, Tian2 and Ding!! offered some further generalizations of
F-KKM and H-KKM type theorems respectively, and gave some applications of their
results to minimax inequality, geometric properties of sets, coincidence theorems and
maximal elements of preference relations.

* This project is supported by the National Natural Science Foundation of P. R. China.
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In this paper, we introduce the notions of compact closure and compact interior
for sets in topological spaces and the notions of the transfer compactly closed-valued
(transfer compactly .open-valued) mappings. A new H-KKM type is proved. As
applications, some coincidence theorems and,fixed point theorems are obtained in
H-spaces. Some existence theorems of equilibria of generalized gemes are-also proved
in H-spaces.

2. PRELIMINARIES

Let X and Y be topological spaces, F(X) denote the family of all finite subsets
of X and 2Y denote the family of all subsets of Y. Let F : X —2Y be a set-valued
mapping. For Ac X and ye ¥, let

FA)=\U {F(x) : xe A} and F'' ()= {xe X:ye F(x)}.

A subset A of a topological space X is said to be compactly closed (resp., compactly
open) if for each nonempty compact subset K of X, A MK is closed (resp., open)

in K. A set Ac X is called an k-text set if it is compactly closed in X. A topological
space X is.called an k-space if each k-text set of X is closed in X (or equivalently,
a subset B of X is open in X if and only if B is compactly open in X), e.g. see
Wilansky*® (p. 142) or Dugundji'* (p. 248). However the topological vector space
RR is not an k-space, e.g. see Kelley? (p. 240) or Wilansky® (p. 143). Hence the
notions compact closedness and compact openness for sets are true generalizations
of the notions of closedness and openness for sets in topological spaces. We define
the compact closure and compact interior of a set A ¢ X, denote by ccl(A) and cin«(A),
as

ccl(d) = M {BcX:AcB and B is compact closed in X}, and

cint(A) = \J {BcX:BcA and B is compact open in X}.

It is easy to see that ccl(A) is the smallest compactly closed subset containing A and
cint(A) is the largest compactly open subset which is contained in A. Clearly, for

each nonempty compact subset K of X, KM ccl(A)=cly (K(MA) and if A is
compactly closed (resp., open), then ccl(A) = A (resp., cint(A) = A).

A mapping G : X — 2" is said to be transfer compactly closed-valued (resp.,
transfer compactly open-valued) if for each x€ X and for each compact set KcC Y,
ye Gx)M K (resp., ye G(x) M K) implies that there exists x"e€ X such that

yve clg (GOXYM K) (resp., y€ intx (G(x") M K)). Clearly each closed-valued (resp.,
open-valued) mapping is transfer closed-valued (resp., transfer open-valued) (see
Tian?) and is also compactly closed-valued (resp., compactly open-valued). Each
transfer closed-valued (resp., transfer open-valued) mapping is transfer compactly
closed-valued (resp., transfer compactly open-valued) and the inverse is not true in
general.
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The following notions were introduced by Bardaro and Ceppitelli'. A pair (X,
{T'a}) is said to be an H-space if X is a topological space and {I';} is a family of

contractible subsets of X indexed by Ae F(X) such that T, < Ty, whenever
AcCA’. A subset D of an H-space (X, {T'4}) is said to be (i) H-convex if r,cbD
for each Ae J(D); (ii) weakly H-convex if T, (\D is contractible for each

A € F(D); (iii) H-compact if for each A e F(X), there exists a compactly weakly
H-convex subset D, of X such that D UACD,

Let {X, {T'4}) be an H-space. For each A € F(X), [, is said to be polytope in
X. (X, {T',}) is said to be an H-space with compact polytopes if “each polytope in
X is compact. If X is a convex subset of a vector space with finite topology, then
X becomes a convex space (see, Lassonde?). For each A € F(X), let T, = co(A), then
it is easy see that (X, {I'4}) becomes an H-space with compact polytopes.

Following Tarafdar®®, for a nonempty D of an H-space (X, {I'4}), define the
H-convex hull of D, denoted by H — co(D), as

H - coD) = M {BcX:DcB and B is H-convex}
and by Lemma 1 of Tarafdar®,
H - co(D) = \U {H - co(A) : Ae F(D)}.

The following notion were introduced by Chang and MaS.

Definition 2.1 — Let D be a nonempty set and (X, {I'4}) be an H-space. A
mapping F : D — 2% is said to be a generalized H-KKM mapping if for each
N e F(D), there exists a single-valued mapping 6: N — X such that M c N implies
Loy © F(M). Moreover, if D is a subset of (X, {[4}) and 8 is the identity mapping
in the above definition, then F is said to be H-KKM mapping.

3. H-KkKkM TyYPE THEOREMS

The following result is Lemma 2 of Ding and Tan'? which is a variation of
Theorem 1 of Horvath?0.

Lemma 3.1 — Let X be a topological space and {R, }:_0 be a family of subsets

of X. Suppose that
(i) for each nonempty subset J of {0, ..., n}, there exists a contractible subset
I; of X such that I;cy R; and I';cT,, whenever JCJ’,
jelJ

(i) for each ie {0, ... n}, RiM\T o, ., ny is closed in Tyg  »)-

Then M R #¢.

i=0
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Theorem 3.1 — Let D be a nonempty set, (X, I'4}) be an H-space and G : D
—2X. If G is generalized H-KKM and for each Ne F(D) and z€ N, G(z2) Ty

is closed in T'gp, then {G(z): z € D} has the finite intersection property. Conversely,
if further assume F{x) = {x} for each x € X, then the converse is also true.

PROOF : Since G is a generalized H-KKM mapping, for any N = {z,..., 2,}

€ :T(D); there exists a single-valued mapping 6 : N — X such that for any Mc N,

FQ(M)CUZEMG(z). By the assumption, for each ze N, G(z) ™ Ign is closed in

L. It is easy to see that the assumptions of Lemma 3.1 are satisfied and hence

we have M . NG(z);tq), that is, {G(z) : z & D} has the finite intersection property.
<

Now suppose that I'y,, = {x} for each x€ X, and {G(z) : z€ D) has the finite
intersection property. For any N = {zy, ..., 2,} € F(D), take an x* € (™  G(z;). Let
i=0

0 : N — X be the constant mapping to x*, i.e. 8(z)=x* for all ze N. Then for each
M c N, we have

n

Foun = (x*} M Gz) < G(M)

i=0

this shows that G is generalized H-KKM. Since for each ze€ N, G(2) M Ty = {x*}
= Ty therefore G(z) Ty, is closed in Ty,

Remark 3.1 : Theorem 3.1 generalized Theorem 3.1 of Chang and Zhang’ and
Theorem 1.2 of Dugundji and Granas!® to H-spaces. Theorem 3.1 also improves
Theorem 1 of Chang and Ma® and Lemma of Park?.

Corollary 3.1 — Let D, (X, {T4}) and G be the same as in Theorem 3.1.
Suppose that for some Me F(D), the set (1 {G(z) : ze M} is compact. If G is
generalized H-KKM and for each Ne F(D) and z€ N, G(z) M Ty is closed in
To, then (Y {G(z2) : z€ D} #¢. Conversely, if futher assume that I';,; = {x} for
each x € X, then the inverse is also true.

Remark 3.2 : Corollary 3.1 improves and generalized Theorem 3.2 of Chang and
Zhang’ and Theorem 1 of Chang and Ma®.

Theorem 3.2 — Let D be a nonempty subset of an H-space (X, {I',}) with
compact polytopes and G : D—2X be a generalized H-KKM mapping with

compactly closed-valued. Suppose that there exists a nonempty compact subset X of
X such that either

O N XG(x)cK for some M € F(D); or

X €

(i)  for each N € F(D), there exists an compact weakly H-convex subset
Ly of X with O(N) < Ly such that
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LM {G(z) : ze Ly D} cK
where 0 is the single-valued mapping involving in the definition of generalized
H-KKM mappings.
Then KM {G(z) : ze D} #¢.

PROOF : Suppose the condition (i) holds. Since for each N € F(D) and for any
single-valued mapping 6:N — X, the polytope Iy, is compact in X and G is
compactly closed-valued, ‘we must have that for each Ne%#(D) and
2€ N,G(z) T is closed in Ty, Thus the conclusion follows from Corollary
3.1.

Now suppose the condition (ii) holds. Define the mapping G, : D — 2X by

Gix)=Gx)yM K.

We claim that {G,(z): z€ D} has the finite intersection property. For any N € F(D),
let Ly be the set in the condition (ii). Define G,:L, M D — 24 by Gy(z)=G({2)

(M L, for each z € L, M D. Then each G,(z) is closed in L, and hence it is compact.
For any Ae F(LyMD) and ze Ly D, Gyz) T4 is closed in I',. Moreover,

G, is generalized H-KKM. In fact, for any Ne F(Ly M D), since Ne F(D) and
G is generalized H-KKM, we have that M — N implies

Note that (Ly, {TI's Ls}) is also an H-space and 6(M) < O(N) c Ly, we have
Cooan M Ly < Ly M G(M) = G3(M),

ie. G, is generalized H-KKM. By Corollary 3.1, M {Gxz):z€ Ly D} #¢. Let
ye M {G2):ze Ly\D} = L, {G@2):z€ Ly(\D}. Then ye K by the

assumption (ii) and thus

ye KMM {G(z) : ze Ly\YD} €« KMM {G(z):z€ N}

= M {G(z):z€ N}.

This shows that {G,(z): z€ D} has the finite intersection property. Since K is
compact, we must have KV {G(z):z€ D} #¢.

Theorem 3.3 — Let D be a nonempty subset of an H-space (X, {T4}) with
compact polytopes, G : D — 2% and K be a nonempty compact subset of X such
that
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(i) G is transfer compactly closed-valued on D,

(ii) the mapping cclG : D — 2X defined by (cclG) (z) = ccl(G(2)) is genera-
lized H-KKM,

(i) for each Ne (D), there exists a compact weakly H-convex subset Ly
of X with Ny_jO8(N)c Ly such that

LY {eckG(z)) : z€ Ly D) K.

Then KMM {G(z):z€ D} #¢.

PROOF : Since each ccl(G(z)) is compactly closed in X by the definition of
compact closure. By applying Theorem 3.2 to cclG, we have

KON {ccl(G(z)): z€ D} #¢.
Now we prove that

Knn ccl(G(2)) = n_, KM ecl(G2))

M,k EMNGQ@)

<

K ﬁf\ze b G(2).

It is clear that K (\(‘\ze , G c K (\(‘\ZE . ccl(G(2)) = ('\ze ) cly (K M G(2)). So we
only need to show that ﬁxe , cly (KM G(2)) ﬁze . (K M G(2)). Suppose, by the
way of contradiction, that there is some yé€ mze DclK (KM G(z)) such that
yé ﬁ'e 5 (KM G(). By the assumption (i), there exists an '€ D such that

y & cly (K M G(Z')) which is a contradiction. Hence we have
KMNM G =K MM ccl(G(2)) # ¢.
xeD ze D

Corollary 3.2 — Let D be a nonempty subset of an H-space (X, {I'4}) with
compact polytopes, G : D —2X and K be a nonempty compact subset of X such
that

(i) G is transfer compact closed-valyed on D,
(i1) ¢clG is an H-KKM mapping,

(1)  for each N e F(D), there exists a compact weakly H-convex subset Ly
of X with Nc Ly such that

Ly ﬂﬁz LD ccl(G()) c K.
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Then KM ) G@) #¢.

Corollary 3.3 — Let D be a nonempty subset of a topological vector space X,
G : D—2X and K be a nonempty compact subset of X such that

(i) G is transfer compactly closed-valued on D,
(ii) cclG is generalized KKM mapping,

(i) for each N € F(D), there exist a compact convex subset Ly of X with
O(N) < Ly such that

Ly ﬁﬁze .

N

ccl(G(z)) c K.
AD

Then KMNN ) G@2) #¢.

PROOF : For each A € F(X), let co(A) = Iy, then (X, {T'4}) is an H-space. The
conclusion follows from Theorem 3.3.

Remark 3.3 : The coercivity condition (iii) of Corollary 3.3 can be replaced by
any one of the following conditions without affecting its conclusion.

(i),  there exists a nonempty subset D, of D such that M ccl(G(2)) c K
ze D,
and Dy is contained in a compact convex subset of X (see Fan!®),
(i) for some Dy € F(D), M ccl(G(z)) K (see Granas'®),
DO

ZE€
(i) for some xy € D, ccl(G(xp)) is compact (see Fan!6),
(ii)); X itself is compact.
It is easy to see that (iii), = (iii); = (iil), = (iii), = (iii) and the condition (iii)
due to Chang’.

Remark 3.4 : Corollary 3.2 improves and generalizes Theorem 2.1 of Chang’,
Theorems 2 and 3 of Tian3?, Corollaries 3.1 and 3.2 of Ding!!, Theorem III of
Lassonde?’. Note that Corollary 3.2 also includes Lemma 2 of Fan!6, Theorem 4 of
Fan'® and Lemma 1 of Brezis et al.%. Hence Theorem 3.3 further generalizes above
results to H-spaces.

4. COINCIDENCE AND FIXED POINT THEOREMS

In this section, we shall prove some coincidence theorems and fixed point
theorems by using our generalized H-KKM type theorem.

Theorem 4.1 — Let D be a nonempty subset of an H-space (X, {I4}) with
compact polytopes, K be compact subset of X, Y be a topological space and S, T :
D —2Y be such that

(1) for each xe D, the set {ye D:S(y) M T(x)# ¢} is H-convex,
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(2) the mapping G : D -» 2P defined by G(x) = {ye D:S(x) M T(y)=0} is
transfer compactly closed-valued,

(3) for each N € F(D), there exists a compact weakly H-convex subset Ly of
X with Nc Ly such that for each ye Ly\K there is x € Ly (™ D satisfying
y & cclG(x),

4) for each xe K, S(DY N\ T(x) # ¢.
Then there exists x* € K such that S(x*) M T(x*) # ¢.
PROOF : By (2), the mapping G : D — 2P defined by

Gx) = {ye D: STy =0}, V xeD

is transfer compactly closed-valued on D. The condition (3) implies that the condition
(iit) of Corollary 3.2 holds. If the mapping cclG is H-KKM, then it follows from

Corollary 3.2 that K™Y\  G(x)#¢. Therefore there exists ye K such that
xeD

S(D) M T(y) =¢ which contradicts the condition (4). Hence cclG is not H-KKM and

so there exist N € F(D) and x* € I', such that x*¢ \U  cclG(x). It follows that

xe N
SX)MT(x*)# ¢ for all xe N and Nc {ze D:85(z) M T(x*) # ¢}. By the condition

(1), we have

xeTy c {ze D:S@) M TK*) =6}

Hence  S(x*) M T(x*) # ¢.

Corollary 4.1 — Let D be a nonempty H-convex subset of an H-space (X,{I'4})
with compact polytopes, Y be a topological space and S, T : X — 2Y be such that

(1) for each xe D, S(D) M\ T(x)#¢ and the set {ye D:S») M T(x)#0} is

H-convex,
(2) for each xe D, the set {ye D:S(x) M\ T(y)# ¢} is compactly open in D,

(3) there exists an H-compact set LcD such that for each

ye D\L,S(LYMT(y)# 6.
Then there exists x* € D such that S(x*) M T(x*) # ¢.
PROOF : By (2), the mapping G : D — 2P defined by

G(x) = {ye D:Sx)MTy)=¢}, V xebD

is compactly closed-valued. Since L is H-compact, for any fixed y, € L, there exists
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a compact weakly H-convex subset Ly, of X satisfying Lc Ly, ). Let K = L, ;. For
each N € JF(D), there exists a compact weakly H-convex subset L, satisfying
L\UNcL,cDsince D is H-convex. By (3), for each ye L,\K c.D\L, there exists
xe€ Lc Ly such that S(x) (M 7T(y) # ¢. By the definition of G and G is compactly

closed-valued, we must have y¢ G(x)=cclG(x). The conclusion follows from
Theorem 4.1.

Corollary 42 — Let (X, {I'4}) be an H-space with compact polytopes, C and
D be a nonempty subset and a nonempty H-convex subset of X, respectively and Y
be a topological space. Let § : X —»2Y, H: C —»2¥ and g : D — 2€ with g(x) =

{x} for each xe D ™ C such that
(1) for each x € D, S(D) ™ H(g(x)) # ¢, and the set {y e X: H(g(x)) M SO) # ¢}
is H-convex,

(2) for each xe D, the set {ye D:S(x) M H(g(y))# ¢} is compactly open in
D,

(3) there exists an H-compact set LcD such that for each
ye DAL, S(LYyM H(g()) = ¢,

4) for each xe D\C, S(x) M\ H(g(x)) = ¢.

Then for exists a point x* € C such that S(x*) M H(x*) # ¢.
PROOF : Define a mapping T : D — 2¥ by

T(x)=H(g(x)), V xe€ D.

Since D is H-convex, by (1), we have that for each x € D, the set
{(ye D:Tx)NSE)#¢} = DM {ye X: T(x) M SO) # ¢}

is H-convex. Hence, by the assumptions (1), (2) and (3), all conditions of Corollary
4.1 are satisfied. There exist x* € D such that S(x*) ™ H(g(x*)) =S M T(x*) # 6.
The assumption (4) implies x* € C and hence x*€ D (M C and g(x*) = {x*}. There-
fore S(x*) MY H(x*)#¢.

Remark 4.1 : Corollary 4.2 generalized Theorem 1 of Huang? in the following

aspect : (1) S may be a set-valued mapping, (2) S may be discontinuous and (3) D
may not be closed.

Corollary 43 — Let D be a nonempty H-convex subset of an H-space (X, {I'y})
with compact polytopes and T : D — 2% be such that
(1) for each xe D, T(x) M\ D is nonempty, T(x) is H-convex and for each
ye D, T-! (y) is compactly open in D,
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(2) there exists an H-compact subset L of D such that for each
xe D\L, T(x)YL#¢. Then there exists a point x*€ D such that

x*e T(x*).
PROOF : Let X = Y, and § be the identity mapping in Corollary 4.1. Then all
conditions of Corollary 4.1 are satisfied. The conclusion follows from Corollary 4.1.

Remark 4.2 : Corollary 4.3 improves Corollary 1 of Huang?? in the following :
(1) T may not be self-mapping, (2) D may not be closed. Letting D = L is nonempty
compact H-convex subset of X and T : D — 2P, Corollary 4.3 reduces to Corollary
2 of Huang??,

Corollary 44 — let D be a nonempty H-convex subset of an H-space
(X, {T'x}) with compact polytopes, T : D — 2X compactly open lower section, i.e.,
for each y e X, T-!(y) is compactly open in D, and for each x € D, T(x) is nonempty
H-convex. If there exists a compact H-convex subset LD such that for each

xe L,T(x) M L#¢, then there exists a point x* € L such that x* & T(x*).
PROOF : Define a mapping F : L — 2L by

F(x) = Tx) "L, V xe L.
For each ye L, we have ye D and
Fl() ={xelL:yeFx)})={xeL:yeTx)ML} =LNT' ()

and hence F!(y) is open in L. Clearly, each F(x) is nonempty H-convex by the
assumptions. By Remark 4.2, the conclusion follows from Corollary 4.3.

Remark 4.3 : Corollary 4.4 improves Theorem 2 of Huang??.

5. EQUILIBRIA OF GENERALIZED GAMES

Following Debreu® and Shafer and Sonnenschein®® we shall describe a
generalized game with the utility functions by €= (D, X;, F,, u;); ; where I = {1, ..,
n} be the set of agents, D, is the choice set of the ith agent, F;: D — 2% is the
constraint correspondence and u;: D — R is the utility function, where D
= I, ;D; and D; is a nonempty H-convex subset of the H-space (X {I‘,';’_}). We
denote the product Il;. ;;.;D; by D' and a generic element of ¥ by x'. A point
x€ D is called an equilibrium point or a generalized Nash equilibrium point of the
generalized game € if for each ie [,

u(x)=u; (% F)=SuPz,.e F@ 4z x)
where X, and ¥ are respectively projections of x onto D, and DV If for all

i€ l, F(x)=D, for all xe D, the generalized game reduces to the conventional game
and the equilibrium is called a Nash equilirbium?®.
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A generalized game instead of being given by € = (D,, X;, F;, 4;); « ; may be given
by T = (D,X; F;, P);.; where for each iel, P,:D— 2% is the preference
correspondence of the ith agent. The relationship between the utility function »; and
the preference correspondence P; can be exhibited by the definition

P(x) = {yi€ D;: uiy, x) > uyx)}
where (y,, x°) is the point of D whose ith co-ordinate is y, A point xe€ D is called
an equilibrium point of the generalized game I’ if for each iel, x,e F,(x)
and P,(x)M F,;(X)=¢. It can be easily checked that a point x€ D is an equi-
librium point of € if and only if x is an equilibrium point of I
Theorem 5.1 — let T' = (D;, (X;, {1"2,_}), F;, P;);c; be a generalized game such
that for each i€ I,
(1) D; is a nonempty H-convex subset of an H-space (X;, {I‘fqi}) with compact
polytopes,
(2) F,P,:D=1l;.; D;—>2% is such that for each xe D, F{(x) \D;#¢ and
Fi{(x) is H-convex,
(3) for each y;€ X;, the set [(H-coP) )\ UGIMNF; Y is compact open
in D where G; = {xe D:F{x) N\ P{x)=0} = {xe D: F(x)M P{x)M
D;=¢}.,

(4) there exist a nonempty H-compact set L;c D; such that for each xe D\ L,
there is an ye L satisfying that for each ie [,y,€ Fi(x) if xe G; and

y; € Fi(x) M H-coP{x) if x¢ G;, where L=1II; ,L;
(5) for each x€ X, x;& H - coP{x).
Then I" has an equilibrium point in D.
PROOF : For each iel, let G; = {xe D.F{x)MP{x)=0¢} and define the
mapping T;: D — 2% by
Fi{x) MY H-coP{x), if x¢ G,

Ti(x)=
Fix), if xe G;.

Then, by the conditions (2) and (3), T{x) D is nonempty H-convex for each
x € D. By the condition (3), for each y, € X, we have

T' ) ={xe D:ye T(x)}

{xe D\G;:y;€ F{x) NYH—-coP{x)} \U {x€ G;:y € F{x)}

(D\G) N F; ) M (H=coP; Y 01U IG N F7 )]
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= [F;' ) MY H-coP) ! )] U G M F; 0]

= [(H-coP)' 3)\UGINF )

is compactly open in D.
Define the mapping 7: D — 2X by
)= [] Tx), ¥V xe D.
iel
Then, D is a nonempty H-convex subset of the H-space (X, {I',}) with compact
polytopes where I', = Il;, I“A and for each x e D, T(x) is nonempty H-convex. For
each y € X, we have

T'p) = {xeD:ye Tx)} = N [xeD:ye T }=N T;'®)

iel iel
and hence T-'(y) is compact open in D for each ye X.
By (4), L=1II;c;L; is an H-compact subset of D and for each x € D\L there
is a point y € L such that for each i € [, y; € T(x). It follows that L (™ T(x) # ¢. Now

all conditions of Corollary 4.3 are satisfied. By Corollary 4.3, there exists a point
x*e D such that x*e T(x*) and so x; € T{(x*) for each ie I If for some

ip€ I, x; € Gy, then xg € F{x*) (M H - coP; (x*) © H ~ coP{x*) which contradicts the
condition (5). Thus, for each i€ I, we must have x* € G;. So that for each ie I,
x; € F{x") and F{x") M\ P{x")=¢.
Remark 5.1 : Theorem 5.1 is closely related to Theorem 3.1 of Tarafdar®® and
Theorem 4.1 of Tarafdar’!.
Corollary 51 — let I'=(D,, (X;, {I"'A,}), F;, P;);c ; be a generalized game such
that for each i€ I, ‘
(1) D; be a compact H-convex subset of X; with compact polytopes,
(2) F, P;: D=1l;¢ ;D; > 2P is such that for each x € D, F{x) is nonempty and
H-convex,
3) for each y: € D,, thet set [(H-coP) 1 (y)\UGIMNF; ! (y;) is compactly open
in D where G; = {xe D: F{x) M P{(x)=¢}.
@) for each xe D, x; & H - coP(x).
Then I' has an equilibrium point in D.
PROOF : Note that Fi(x), P{x) c D; for all xe D, the conclusion follows from
Theorem 5.1 with L;=D,.
For each i€ I, let D; be a nonempty H-convex subset of an H-space (X, {rj,_})
and D=1l ;D; A functional ¢;: DxD;— R\ {t} is said to be 0-generalized



COINCIDENCE THEOREMS AND EQUILIBRIA OF GENERALIZED GAMES 1069

diagonally quasiconcave (0-GDQCV) in y;e D; if for any finite set A; =
{¥its - Yim} ©D; and any x € D with x;e H-coA;, we have

min; ge<m § (%, y;,) < 0.

When [ contains only one element and D; is a nonempty convex subset of a

topological vector space, the notion of 0-GDQCV coincide with the notion of
0-DQCV introduced by Zhou and Chen3.

Proposition 5.1 — Let ¢;:DxD;—>R\J {to} be a functional. Then the
following conditions are equivalent :

(1) ¢;(x,y) is 0-GDQCV in y; € D;,

(2) for each xe D, x;& H—co({y;€ D;: ¢; (x,y;)>0)).

PROOF : (1) = (2). If (2) does not hold, then, by Lemma 1 of Tarafdar?, there
exist an xe€ D and a finite set A; = {y;, ..., ¥im} CD; such that x;e H—- coA; and
oi{x, y4) >0 for each £ = 1, ..., m which contradicts the fact that ¢; is 0-GDQCYV in
y;€ D;.

(2) = (1). If (1) does not hold, then there exist a finite set A; = {y;, ..., Vim}
€ D; and an x€ D with x; € H—coA; such that ¢(x,y,)> 0 forall k = 1, .., m. It

follows that
x;€ H-co({y;€ D;: ¢;(x,y)>0})

which contradicts the condition (2).
Theorem 5.2 — Let € = (D;, (X, {T%}), A u)ic; be a generalized game with
the utility functions such that for each i€ I,
(1) D; is a nonempty H-convex subset of X; with compact polytopes,
(2) F;:D — 2% is such that for each xe D, F{x) is nonempty H-convex,
(3) u;: D> R is such that for any finite set A; = {¥;, ..., Yim} <D; and for any
xe D with x;e€ H-coA,,

Min; << m u; it XY S u; (x;, x) = u(x),

(4) for each y;€ D,, the set [(H - coP;y ! (y)\U G M F! () is compact open
in D where G; = {xe D:ufy,x)>ufx), for some y;e F{x)} and the
mapping P;: D — 20 is defined by Py(x)= {y; € D;: ufly;, x') > ufx)},

(5) there exist a nonempty H-compact subset L; of D; such that for each
x € D\L there is an y € L such that for each i€ I, y;€ Fyx) if x€ G; and
yi € F{x) M\ H - coP(x) if x& G,

Then € has an equilibrium point in D.

PROOF : For each i e I, define the functional ¢;: DxD; - R by
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o; (x, y) = uy, X) — ufx, '), V (x,y;)€ Dx D,

By the condition (3), the functional ¢; is 0-GDQCV in y;e D, It follows from
Proposition 5.1 that for each xe D,

x; € H—co({y; € D;: ¢i(x,y)>0})

H — co({y; € D; : u{y; x') > ufx)})

H — coPix).

It is easy to check that the generalized game I'=(D, (X, (I'f,‘_}), F, P);., satisfies
all conditions of Theorem 5.1. Hence there exists a point x* € D such that for each
iel x;e F(x*) and F,(x’) M\ P{x*)=¢. By the definition of P, we have

F,(x") N\ PLx") = {y; € Fx") 1 u(y;, ¥) > ufx*)} = ¢
and hence we must have for each ie I,
u(x") = supy, ¢ rey Wi X')-

This proves that x* € D is an equilibrium point of €.
Remark 5.2 : Theorem 5.2 improves and generalizes Theorem 3 of Huang??.
Corollary 5.2 — Let ¢ = ((X,, {1",'4’_}), F;, u;);c; be a generalized game with
utility functions such that for each i€ [,
(1) X; is compact H-space,
(2) F;:X=I,. ;X; > 2% is such that for each xe X, Fi(x) is nonempty
H-convex,

(3) u;: X—> R is such that for any finite set A; = {y;;, ..., yim} € X; and for any
xe X with x;€ H-coA,;,

miny ¢ ¢ < m #; Yito X) S u(x),

(4) for each y; € X, the set [(H-coP)!' (y)\UGINF; ! (y;) is open in X where
G; = {xe X:uly,x)>ufx), for some y;e F{x)} and the mapping
P;: X > 2% is defined by P(x)={y; € X;: uly; x) > ux)}.
Then & has an equilibrium point in X.
PROOF : For each i€ I, let D;=L;=X; in Theorem 5.2. The conclusion follows
from Theorem 5.2.
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