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The lincar capillary-gravity waves generated on an inertial surface of a fluid of finite
uniform depth, by moving oscillatory surface pressure distribution is considered. The
steady far field wave pattern is determined for all values of the parameters and the
effect of inertial surface on wave pattern is studied. That the inertial surface has
some damping effect is conclusively established. It is found that a particular wave
which propagates in non-inertial surface for some values of the parameters may not
propagate in the inertial case for the same values of the parameters.

1. INTRODUCTION

In this paper we study the capillary-gravity waves generated by a moving
oscillatory pressure distribution acting on the surface of an unbounded fluid of finite
depth. The fluid is inviscid, incompressible and is completely covered by an inertial
surface composed of a thin uniform distribution of disconnected heavy floating matter.
The corresponding problem without inertial surface has been investigated by Pramanik
and Majumdar’. The various problems with inertial surface has been investigated by
a number of authors. Among their works, mention may be made of the works of
Peters® and Rhodes-Robinson®. But no author discussed in detail and explicitly the
effect of the inertial surface on the resulting wave pattern. However, in the present
problem which has not yet been investigated, this effect is shown in greater detail.

In order to understand the effect we now state briefly the results of the
corresponding problem in the non-inertial case i.e., the case when the fluid is not
covered by an inertial surface. In this case, the steady state at far field from the
source consists, in general, of six progressive waves : four gravity waves and two
capillary waves which are characterised by three dimensionless parameters. Supposing
® to be the frequency of oscillation of the moving pressure distribution, V the
uniform velocity of the pressure distribution, T’ the surface tension, & the uniform
depth of the fluid and p the volume density of the fluid, the three parameters are
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where T=T'/p. The critical cases which arise due to coalescence of the roots of
the frequency equations are represented by some surface fla, b, ¢) = 0, called the
critical surface in the parametric space (a, b, ¢). In this case it is found that the
intersecting curves of the critical surface by the plane ¢ = constant have only two
forms. For 0 < ¢ < 1/3 this intersecting curve divides the whole positive quadrant
of the (a — b) plane into five distinct regions, in each of which the set of roots of
the frequency equations is different, while for any ¢ = 1/3 the corresponding curve
divides the plane into two such regions.

In the inertial case i.e., the case when the fluid is covered by an inertial surface,
the ultimate steady state consists of the same number of progressive waves : four
gravity waves and two capillary waves similar to the non-inertial case, however with
modified amplitudes and phases. But, besides the parameters a, b, ¢ there exists a
new dimensionless parameter, namely o =¢/h where pe is the area density of the
inertial surface. For the existence of this parameter the frequency curve and critical
surface are modified. As before there are two different intersecting curves of the
ciritical surface for different ranges of ¢, o whose complete determination is a
different task from the previous case. However, for 0 < ¢ < ((1/3)+a) the
intersecting curve divides the whole positive quadrant of the (@ — b) plane into seven
distinct regions and for ¢ 2 ((1/3)+ a ) the corresponding curve divides the plane
into three distinct regions and accordingly the propagation of waves in this case
become modified. Specifically, it is found here that the existence of the inertial
surface puts some restriction on the propagation of resulting waves. This implies that
a particular wave which exists for a certain value of (a, b) in the non-inertial case
may not exist in the present case for the same value of (q, b). This will be clear,
if we compare the region R; for points of which all the waves exist with the
corresponding region in the inertial case, in view of the total number of points
constituting those regions. In the inertial case the set of points (a, b) constituting
that region is smaller in size than that in the non-inertial case.

2. FORMULATION AND FORMAL SOLUTION

We consider an unbounded fluid of volume density p whose surface is
completely covered by an inertial surface composed of a thin uniform distribution of
disconnected heavy floating matter of area density pe, say. We take x-axis along the
undisturbed inertial surface and y-axis vertically upwards. The system being initially
at rest, waves are produced by the continued application of the pressure
distribution p(x; ) = fix) ¢ which at the same time moves along the positive
direction of x-axis with unfirom velocity V.

Let @(x,y; r) be the velocity potential, Nn(x; 1) the surface elevation and T’ the

surface tension of the fluid. Then in the co-ordinate system which moves with the
velocity V we have the following linearised initial value ‘problem :
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o(x,y;0)=0, n(x;0) = 0. . (2.5)

The formal solution of the problem is obtained by Fourier-transforming the above
system of equations with respect to x and then using the Fourier inversion formula.
The following integral representation for | with dimensionless variables can be easily
obtained,

| -
nex; t)—m E. I, .. (2.6)

where
L= ]: F\(A) exp {i[Ax + (6 + bA)]} dA,
0
L= ]: Fy(A) exp {i[Ax — (6 — bA)]} dA,
0
L=~ ]: Fiy(A) exp {i(Ax +at)} dh
0
I,=- T Fy(A) exp {i(Ax +ar)} dA,
0

Is= | F0\)exp (- i - (@ - A
(1]

Io= | Fudyexp (-ilhx+ (0 + b)) dh,
(1]
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3. STEADY-STATE SOLUTION

We shall determine the asymptotic values of the integrals for large time at a
large distance from the pressure segment.

The asymptotic values appear as contributions in the form of residues at the real
poles of the integrands of the integrals in (2.6). These poles are the solutions of the
following three equations, called the frequency equations :

G-bh-a =0 .. 3.
6-bh+a =0 .. (3.2)
C+bh-a = 0. .. (3.3)

We shall determine these roots for given values of the parameters a, b, ¢ and a.
The roots will be determined as the points of intersection of the frequency curve m
= G and the straight lines m = bA + a, m = bk — a and m = — b\ + a. Since
the determination of the roots crucially depends upon the shape of the curve m = o,
50 we turn our attention into the investigation of the shape of the curve. Its shape
depends upon the parameters ¢ and &. For a = 0 and c# 0, the case described by
Pramanik and Majumdar' there are two branches in the curve when ¢ < 1/3, one
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branch passing through origin is called the gravity branch and the other called
capillary branch and for ¢ > 1/3 there is only one branch, the capillary branch.
Assuming that due to the existence of the parameter o there will be no abrupt change
in the shape of the frequency curve we anticipate that in the case o # 0, ¢ # 0,
the same two shapes shown in Figs. 1 and 2 are valid with, of course, different
values of ¢ separating the two cases. These two shapes are similar as the previous
case excepting the capillary branch in which the gradient is finite when A — oo,

0,
4 *
. ,6 <
8 xo '3 6\'
o !
P
f «© m
m
O, a A '
A
FiG. 1. The roots of eqn. (3.1) FiG. 2. The roots of eqn. (3.1)
for 0 < ¢ < ((1/73)+a). for c 2((1/3)+a).

There will be different ranges of values of (¢, ¢) for which one of the two
shapes will be appropriate. To determine these ranges we proceed as follows : we
see that the gradients change differently in two shapes. In the shape in Fig. 1 gradient
firstly decreases and then increases while in the other shape gradient gradually
increases with increasing A. To motivate this idea we consider the tangency of any
line m = bA with m = ¢. The condition of tangency is mathematically expressed as

o=bA
for 0 €A <'oo, .. 3.49)
o'=b

From this ¢ can be expressed as a function of A and a ie.,

_tanh A + 20 tanh? A — A sech?
- A2 (A sech? A + tanh )

for 0<A<oo, .. (3.5)
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One can show with a little manipulation that de < 0 for all values of a. Consequently

dA
for all values of o the curve (3.5) is monotonically decreasing with increasing A and
hence the maximum value of ¢ occurs at A = 0 and thus the maximum value is
((1/3)+ a). The shape of the curve (3.5) is shown in Fig. 3. It follows that for
any ¢ < ((1/3)+ o) there is a value of A for which the line m = bA is tangent to
the curve m = ¢ and hence Fig. 1 is appropriate. On the other hand for any
c2((1/3)+a) the line m = bA is never tangent to m = o, so Fig. 2 is appropriate.

3.1. Steady Waves for 0 < ¢ < ((1/3)+a)

In this case it is easy to show that the frequency curve m = & has a point of
inflexion at some point A =23y (> 0) satisfying the following equation :

4[(1 + o tanh A) 3cA tanh A + (1 + 3cA? + 20cA? tanh A) sech? A
— (A + cA3) sech? A tanh A] (1 + oA tanh A) (A + cA3) tanh A
— [(1 + 3¢AZ + 20cA3 tanh A) tanh A + (A + cA3) sech? A}
X [3a (A sech? A + tanh A) (A + cA?) tanh A + (1 + oA tanh A)
X {(A+cA3)sech? A+ (1 +3cA?)tanh A}] = O. ... (3.6)

It can be seen from Fig. 1 that eqn. (3.1) has, in general, three real positive
roots Aj, Ay A;, say (A <Ay<A3), eqn. (3.2) has two such roots A4 As, say

20
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FiG. 3. The shape of the curve (3.5).
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(As<As) and eqn. (3.3) has always one such root Ag. The existence of the roots
depends upon the values of the parameters a, b, c. This distribution can be known
by a study of the cases where some of the roots coalesce, called the critical cases.
Following Pramanik and Majumdar' the critical cases have the following
representation

_(a+ 3cA? + 20c)3 tanh A) tanh A + (A + cA?) sech? A

o - (3.7
2(1 + OA tanh )\,)3/2 [(7\'*‘01,3) tanh 7&]1/2 for 0<A< 3.7

b

ae (A —cA3 + 20A? tanh A) tanh A — A (A + cA3) sech? A
2(1 + oA tanh A)>/2 [(A + cA?) tanh A]1/2

for 0<A<X

_ MA+ M) sech? A — (A — cA? + 20A? tanh A) tanh A
h 2(1 + oA tanh A)¥2 {(A + cA3) tanh A}!/2

for M’<A<oo

. (3.8)

where A’ is the value of A for which the straight line m = bA is a tangent to the
curve m = ¢ and this value is given by

(1—-cA?+ 20 tanh A) tanh A — (1 + cA?) A sech? A = 0. . (3.9)

Now for a fixed value of o eqns. (3.7) and (3.8) represent, in the parametric form
a surface called the critical surface fla, b, ¢) = 0 in the space of the parameters a,
b, ¢. The intersecting curve of this surface by the plane ¢ = constant can be drawn
for certain values of c¢. For a = 0.1 and ¢ = 0.07 such a curve is shown in Fig. 4
where the point A, corresponds to A = A, and the point A" to A =A". This curve starts

from some finite point A and ends at the finite point B having co-ordinate a =
172

2
%(c/oﬂ) , b = (c/a)l/. The curvilinear portions C;, C, and C,, extending
respectively from the point A to A, from A, to A" and from A’ to B represent the
cases A, =A, A, =A; and A,=A, respectively. The straight lines DB, CB passing
through the point B and parallel to the axes a, b as shown in Fig. 4 correspond to

the values a = %(c/oﬁ)m, b= (c/a )m respectively. Now the curves C,, G,

C, and the straight lines CB, DB divide in the whole positive quadrant of the
plane (a — b) into 9 regions R, (n = 1 to 9) as shown in Fig. 4 of which seven
regions are distinct.

In each of those regions there corresponds a definite subset of the roots A,
(r = 1 to 6) in the sense that the values of the parameters a, b which determine
the region also fix the roots. The roots of egns. (3.1), (3.2) and (3.3) can now be
determined for all values of the parameters a, b. This can be achieved geometrically
by considering Fig. 1 and Fig. 4 side by side. This procedure is explained in
Pramanik and Majumdar'. So in the following we write down the distributions of
these roots in various regions :



1132 A. K. PRAMANIK AND D. BANIK

T T T T S N T T VR VR S

A Mhe A A Ag A5 A Ag As Ag Ag Ay Mg
It is noted that the roots in the regions R; and R, and also in the regions R,, R; are
identical. For points (a, b) on the critical curve the roots can also be similarly

determined. It is to be noted that for each point on the critical curve, two of the
roots coincide excepting the point A, where three roots coincide.
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Re

0

FiG. 4. The section of the critical surface in the (@ — b) plane
for c = 007, o = 0.1.

We are now in a position to determine the asymptotic waves at far field after
a large time. These asymptotic waves come as contributions to the asymptotic values
of the integrals in terms of the poles of the integrands in (2.6). In the following we
firstly write down the waves for (a, b) in the region R; where all the waves

N, (r =1 to 6) exist

n=n|+n3+n5 as t—>o00, X —)oo
.. (3.10)

=M +Ne+Ns as t—‘)°°,. X > oo
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where
m=H Q)exp {ilar-Ax)}, TMy=-H (A)exp {i(ar-Ax)},
N3 =H; (Ay) exp {iar-Ax)},  My=H, ) exp {i(ar+ i),
Ns=—Hy (As) exp {i(at +Asx)}, Me=H; (he) exp {ilar+Aex)}
and

i ) Aq (= A) tanh A
2 pgh (2m)72 " (1 + ok tanh &) [0’ (A) - b] (L)

o) =

o Ag (A) tanh A
2 pgh 2m)12 (1 + oA tanh A) [0 (L) — b] o(A)

Hy(\) =

_ T _ Ag (A) tanh A
" 2pgh(2m)2 (1 + oA tanh A) [0’ (A) + bl 6(A)

Hy(A)

The wave system for the case when the values of the parameters a, b are such that
the point (a, b) lies in other regions is easy to determine. This is the same
wave-system as expressed in (3.10), only the wave corresponding to a pole not
occurring in a region being deleted for that region. Thus we see that for the points
(a, b) in R, the steady state consists of six progressive waves. Among these, the
waves 1), M, N4, N are the gravity waves and the rest are the capillary waves. Three
gravity waves exist in the downstream side and one in the upstream side, while both
the capillary waves exist in the upstream side.

3.2. Steady Waves for c2 (% +0o ]

It is evident from Fig. 2 that the roots of the frequency equations in the present
case are Az, Ag, As, Ag. And Ay, A5 may coincide to give rise to the critical case which
is represented as follows :

_AMA+cA)sech?2 A — (A —cA*+20A2 anh A) tanh A
B 2(1 + oA tanh A)32 [(A + cA3) tanh A)!72
0<A <o

b_(1+3c12+2ack3tanh A)tanh A+ (1 +cA3)sechZ )
- 2(1 + oA tanh A)32 [(A + cA3) tanh A)Y2

. G311
The intersecting curve C, of the critical surface (3.11) is drawn for ¢ = 1 and o =

0.4 in Fig. 5. This curve starts from E and ends at some finite point F and it
represents the case A, =A,. The straight lines FH and FG passing through the point

F and parallel to the axes a, b as shown in Fig. 5 correspond to the values
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FiG. 5. The section of the critical surface in the (@ — b) plane
forc =1, a = 04.
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C

Lf.e , b= o respectively. The curve C, and these straight lines divide

a=—-|—
2({ o?
the whole positive quadrant of the (a — b) plane into five regions r, (n = 1 t0 5)
as shown in Fig. 5 of which 3 regions are distinct. As before we write down the

distribution of the roots A, A, As, A in the regions :

r ) 3 T4 Ts
A.3 ).3 N }\.4 )b4 )\4 )\'3
e As, Ag Ae Ag Ag

As the case ¢ < %+a , the steady-state value of 1 in each region can be

calculated. Here only we write down the same in region r, for the points (a, b) of
which all the waves n;, 1,, N, Tg €Xist

N="n3+MNs as t—yoo, X oo
=My+Tg a8 —reo, xX—>—00

The comparison of the present results with those in the non-inertial case reveals the
effect of inertial surface on the resulting waves. It is seen that for both the ranges

3
quadrant of the ‘(@ — b) plane into several regions is different here. Each of the
curves C,, C,, C, and C, are somewhat. shortened in the present case. This shortening

O<cx l+ o {and ¢ Z(I%Hx the intersecting curve dividing the whole positive
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is more apparent for the curves C, and C,. The curves C,, C, in the non-inertial
case go upto infinity but here they are terminated at finite points. As a result of
such change the existence of the waves for different values of (a, b) is altered from
that in the non-inertial case and it can be easily verified that existence of the waves
are restricted in the present case. This means that a particular wave that exists in
non-inertial case for certain values of (a, b) may not exist in the present case for
the same values of (a, b). As an illustration we consider the region R,. It is easy
to verify that the set of points (4, b) comprising the region R, is smaller in the
present case than the corresponding set in the previous case. As a result the cases
of existence of all the gravity and capillary waves are much restricted than the
previous case. Also consideration of waves above the line DB and to the right of
CB establishes the fact more clearly. For the points (a, b) in R,, both the capillary
waves 13 and My do not exist in the present case but in the non-inertial they exist
in the corresponding region. The similar phenomenon occurs for the points (a, b) in
the region R,. The restriction of the inertial surface on the propagation of waves is
more apparent on the capillary waves 1, and 1s. In the non-inertial case either both
wave present or both absent. But in the present case, the region where both are
present is again subdivided into two in one of which only one wave is present. Thus
it follows that the inertial surface can prohibit the propagation of capillary waves
more effectively than that of the gravity waves.

The physical reason is, of course, clear. The capillary waves are of short wave
length. So it is obvious that they are easily damped out by the inertial surface.
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