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The distribution of temperature, displacement and stress in an infinite homogeneous
transversely isotropic elastic solid having a spherical cavity has been investigated by
taking (i) unit step in stress and zero temperature change, and (ii) unit step in
temperature and zero stress, at the boundary of the cavity. The Laplace transform on
time has been used to obtain the solutions in the context of generalised thermoelas-
ticity formulated by Noda er al. that combines both the theories developed by Lord
and Shulman as well as Green and Lindsay. Because of the short duration of "second
sound" effects, the small time solutions have been derived. The results have been
discussed at the wave fronts. The results obtained theoretically have aiso been verified
numerically and are represented graphically.

1. INTRODUCTION

Recently, the generalized theory of thermoelasticity (Lord and Shulman!) has
been extended to anisotropic solids by Dhaliwal and Sherief?. Singh and Sharma3
studied the propagation of plane harmonic waves in a generalized thermoelastic
homogeneous transversely isotropic medium and Sharma and Sidhu* investigated the
problem of propagation of generalized thermoelastic waves in homogeneous
anisotropic media. Sharma’® studied transient generalized thermoelastic waves in a
transversely isotropic medium with a cylindrical hole, and Sharma and Chand®
discussed the distribution of temperature and stresses in an elastic plate resulting from
a suddenly punched hole. While Wadhawan’ studied the problem of spherically
symmetric thermoelastic disturbances in the context of Lord and Shulman' theory
(Here in after called L-S theory), Chatterjee and Roychaudhuri® investigated the same
problem in the context of Green and Lindsay’ theory (Here in after called
G-L Theory).
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In the present paper, the distribution of deformation, temperature and stress in
an infinite homogeneous transversely isotropic elastic medium due to (i) unit step in
stress and zero temperature change, and (ii) unit step in temperature and zero stress,
acting on the boundary of the spherical cavity in the medium, have been investigated
in the context of the generalized thermoelasticity formulated by Noda et al.!® that
combines both the theories developed in Dhaliwal and Sherief? and Green and
Lindsay®, by using Laplace transform technique. Because the "second sound" effects
are short lived, so small time approximations have been considered. The results
obtained theoretically, have also been verified numerically and are represented
graphically.

2. FORMULATION OF THE PROBLEM

We consider an infinitely extended homogeneous transversely isotropic
thermoelastic solid having a spherical cavity of radius a. Let the origin of the
spherical co-ordinate system (r, ©, ¢) be at the centre of the cavity. The medium is
characterised by r 2a and we analyse the problem of the transient thermoelastic
waves due to (i) a unit step in stress and zero temperature change, and (ii) zero
stress and a unit step in temperature, acting on the inner boundary of the spherical
cavity. We consider the case of spherical symmetry so that the non-zero displacement
component u = u(r, f). Then the governing field equations of motion and heat
conduction in the absence of body forces and heat sources are? 10 :

Culuy+@/DU - Q/Pul -B T+, T)=p it eR)

K (T, +Q/NTJ-pCc(T+0T)
=B Tolu,+Q/Pu+itydix(u ,+@2/ryu )l . (22)
where B,=(C,,+Cp)a,+C3 05, C; are isothermal elastic parameters, K, is the
thermal conductivity, p, C,, and f,t, are respectively the density, specific heat at

constant strain and the thermal relaxation times, §,, is the Kronecker’s delta and
u=0u/ot, u,=ou/or etc.

For L-S theory 1, = 0, 8, = 1 and for G-L theory 7, > 0, 8,x = 0 (ie. K = 1| for
L-S and K = 2 for G-L theory). The thermal relaxation times ¢, and 1, satisfy the
inequalities'!

1, 21320, for G-L theory only. . (2.3)
The medium is. assumed to be at rest and undisturbed initially, so the initial and
regularity conditions can be written as

u=0=T, i =0=Tatt=0,r2a du/dt=0ar=0

. 24
and u=0=T, for t20 when r = o,
We take two types of boundary conditions for ¢ > 0 as :
() S, (rn)=H(®), I(r.1) = 0 - (2.5)

and (ii) 0, (7, )=0, T(r, ) = H(), onr=a .. (2.6)
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where H(r) is Heaviside function of time.
We define the quantities

R = w*rlv, t=w'1,
w*=Cy; C/Ky, =P To/p C. Cy,

U= pW‘Vu/B|T, Z'—‘T/To, T():W‘to,

v=C,/p. - Q.7

T = w* tl,
Here € is the thermoelastic coupling constant, w* the characteristic frequency of the

medium and v the velocity of the QL-wave.
Introducing the quantities (2.7) in eqns. (2.1) and (2.2), we obtain
.. (2.8)

U,RR+2R—’ U,R—ZR—ZU—I.].:(Z‘FTIZ).R
Zar+ 2RV Za—(7+T02 )=€@/OR+2/R) (I +To Sk I ). .. (2.9)

The boundary of the spherical cavity i.e. r = a is given by

R = w*alv = 1 (say).

The initial and regularity conditions (2.4) become
U=0=Za t=0,R2n; du/dt =0atR =0,
.. (2.10)

and U=0=Zfort=
The boundary conditions (2.5) and (2.6) take the form
. (2.11)

(l) oR (TL T)=H(T), Z(n, T) = 0

0 when r — oo,

and
(1) 6, (N, 1)=0, Z,T) = H(T) . (2.12)

where
GR=U‘R+2R'1bU-—(Z+TIZ), b=Cy/Cyy. . (2.13)

3. SOLUTION OF THE PROBLEM
Applying the Laplace transform defined by
> .. (3.1)
sRP)= [ dR Vexppr)
0

w.r.t. time, to eqns. (2.8) and (2.9) and using (2.10), we get
... 32)

{(DD+2RY)~-p?} U = p*1,D7Z
. (3.3)

(D+2RYD-15p?) Z = et p* (D+2R) T
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where
T=1+p", T=to+p, =T x+p", D=d/dr. - (34)
Equations (3.2) and (3.3) provide us

(DD +2RNHY — (mi+m)DD+2RY+me+mi 1T =0 .. (3.5)

{(D+2R")DY? ~ (mi+m) (D+2RYD+mim31Z = 0 ... 3.6)
where m; and m; are given by the quadratic equation
m-pll+e+p (1 +T+eT Sk +en) Imi+pP+1,p* = 0. . (3.7)

The solution of eqns. (3.5) and (3.6) are modified Bessel’s functions of order 3/2

and 1/2 respectively (Watson'?, and can be expressed in terms of exponentials so
that

2
U= A(l/R+1/mR%exp(-mR) .. 3.8)
i=1

2
- .. (3.9)
Z = Biexp(-mR)/R

i=1

where A; and B, are constants.
Using eqns. (3.8) and (3.9) in (3.3), we get

B; =~ ((m;ep (1o 81k p + 1) A/ (m] — (o p + 1)p). - (3.10)

Case I : Step input of stress and constant temperature

We consider a constant stress of magnitude unity suddenly applied on the
boundary of the spherical cavity and the temperature at the boundary is kept constant,
in this case eqns. (3.8)-(3.10) along with the boundary conditions (2.11) lead to

A =Y,/pA, A,=-Y/pA . (3.11)
where A=X,Y,-X,Y, .. (3.12)
X; = (aQ +mn) +mI N2} exp (=m;n)/m;n

- (3.13)
Y;

~ &p (T 81k p + 1) m; exp (- mn)/(m} — (%o p + 1)p)

a = 2(1 - b) = 2(C11—C12)/C11. (314)
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Case 11 : Step input of temperature and zero stress

We consider a constant temperature of magnitude unity suddenly applied on the
boundary of the spherical cavity and the boundary is kept stress free. In this case
eqns. (3.8)-(3.10) alongwith the boundary conditions (2.12) lead 1o

A =Xy~ (tp+ 1) pY,)l/pA
Ay =[X, - (1p + 1) pY,)/pA . (3.15)

where A is given by egn. (3.12) and X, Y, are given by (3.13).

4. SMALL TIME-APPROXIMATIONS

Because the ‘second sound’ effects are short lived (Green!!), therefore we
concentrate our attention on small time approximations i.e. we take p large. The roots
m;, i = 1, 2 of eqn. (3.7) can be approximated as!?

mi=pvi' +¢;+op7), i=1,2 . (41
where

i = (K, £ M) 22,

01.2= K, £ (K, K, - 2/NM 1/2V2 (K, £ VM )2 . (42)

M=K:-41,, K,=1+¢ Ky=1+To+ET, +ETp Oy . (43)
Again M= (1+81, - TP +4eT, T, +€ Ty ¢ {ETo + 2(1 + T, +€1,)} > 0.

Also (1 +€1, + T+ £Ty 8,x)? > M so that v; < v,. Thus v, corresponds to the speed
of slowest wave and v, to that of fastest wave. As a consequence of this, the points
of the solid for which R > t v, dot not experience any disturbance. From eqns. (4.2)
and (4.3) we see that as 1,=7,20; v;—>1 and v, > But Ty,=17 = 0
corresponds to the case of the coupled theory of thermoelasticity, which predicts an
infinite speed of heat propagation. We conclude that the wave propagating with speed
v, must be elastic influenced by the thermal field. Since v, <v,, the elastic wave

follows the thermal wave.

For Case 1, using expansion (4.1) in (3.13) and (3.12) and then in (3.8) to (3.9),
we obtain

Z(R, p) = (£Tov] V3 /RO —v3)
% {exp (= &, R,) [(1/p)+ (M) + ) (1/p))] exp —pR\/v))

+exp (-0 R, [1/p+ (Ms+ S5) 1/p2 1exp (= pRi/v,} - (44)
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UR, p) = (v vy V/ROT-vD) {v2 (1-Tov7) exp (- &y Ry)
X [(1/p%) + (v,/R+ M, )/p*l exp (-pR,/vy)
+v (1-Tg VD) exp (- R) [1/p + (vo/R+ M>)/pY)
X exp (- pRi/v,)} . (4.5)
Br= (- v} v VRO - W) (10 - %o v +e 10 )/vi p + M) /p?)
X exp (- (& + p/vi) Ry) + [(1 = T va + € To v3)/V3 p + My /p?]

X exp (- (¢ +p/v)R)} ... (4.6)

for L-S theory and

Z R, p) = (- eNVEIVI/ROE =) (v (1 -1 VD) exp (- ¢, R))
x [1/p%+ (M; + 5,)/p*) exp (- p R,/vy)
+exp (-0, R) v, (1-%13)
X [l/p2 +(M,+S5) 1/p3] exp (- pR\/v,)) .. @
U R, p) = (v vo/ROF—3)) {v2 (1 -t v]) exp (- & Ry)

x [(1/p2)+ (/R ~M)/p*) exp (-p Ri/v))
+ v (1-Tgv)) exp (-4, Ry) [(1/p2) + (vo/R— Mp)/p]
X exp (- pRy/v3)} .. (4.8)
Gr =0 Vi /RO —v9) {[(1 = Tovi + £ T Vi M/ p+ M) /7]
X exp (- Ry @ +p/v) + [(1 =T Vi +E T v M/Vip + M3/p?]

x exp (- Ry (9, +p/1)} ... (49)
for G-L theory, where

Sy =10 v (1 + ) -1/ (1 -9 ¥)),
53 =07 v2 (1 + % v3) - val/(1 — o v3),

Q = [Ny Vi — N3 v + %0 v} v3 (N - Np)l/ (v} - v2),
N] =¢2v2+av2/1]-S1, N2=¢1 Vi +av1/n—52,

M=5+0, My=5,+Q, S\=1'-5), S$=1' -5,
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Ny=Ni+ (0 v (1= T) + 1)/ Tp, Na=Ny+ (0, v (1 - To) + )/ T,
@ =[N, vi - Ny vi + T vi v (N, - NI/ (V) - ),
Mi=5-Q, My=S-Q, Ry=R-n,
MY = {(1 = Ty v} + €% V) M, +€ T} S\ + (b vi —avi/R) (1 - o v,
My = (1 - TV} +€% V) Mo+ €791} 55+ (0 v2— ava/R) (1 -9 I,
Mi = {(1 - Vi +e T MWD M +(1-15v]) (6, v) - av,/R)
+en T v (S + 1 I,
M3 = {(1 - Tv3+ET,1V3) My+ (1 —Tgv3) (92 v2 — avp/R)
FENT VA (S + 5 )i - (4.10)
Inverting the Laplace transform, we obtain
Z(R, 1) = (£ Tovi vi/R( —13)) {exp ( -, R) [H(T-R,/v,)
+(M, +S8) (t=R,/v,) Hx - R/v)]

+ exp (=0, R) [HT - Ry/vy) + (My + S))
x (T=Ry/vy) H(t - R, /v)]} o (411

UR, ©) = (v v, VRO -9)) {v2(1 -TovD) exp (-, R) (- R1/v)
+ /R+ M) (t~R/v) 1 H(t-R,/v;)
+v,(1-Tova) exp (= R) [(T—R/vy)

+(vy/R+My) (1= R/v)?l HT - R/v2)) . (412)

Or (R, T) = (- V2 v&/R(OA = v3)) {exp (=& R) [(1 - T vi+E To v/ V]
+ M| (t=R/v)] H(T-R\/v)+exp (-6 R))
X [(1 - TV +ETo3)/v3 + My (T-Ri/v)) HT-Ri/v2))

.. (4.13)
for L-S theory and

ZR, 1) = (—en v vi/ROL-v3)) {exp (= & R [(T - Ri/vy) + (M, +Sp)
x (T"Rl/Vl)z H(T-—Rl/vl) + €exp (— %Rl)[(T—Rl/Vz)
+(M, + S,) (T — Ry/vaP1 H(t - R /vy)} .. (4.149)
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UR, 1) = (v v/R =) {v2 (1 - T Vi) exp (- & R) [(T - R,/))
+ (v/R-M) (T=R,/v)1 Ht-R,/v))
+vi (1 -Tov3) exp (-0, R) [(T-Ri/vy)
+ (vo/R~My) (T- R /v))l HT—R,/v,)} ... (4.15)

O (R, 1) = (v; v3/R(vi - v3)) {[(1 - Vi + £ T, NV + M} (T— Ry/wp))
X exp (-9 R)HT-Ri/v)+ [(1 - Tva +£T, 1 vp)/V

+M5(T-R;/v3)] exp (-, R)) H(T-Ri/vp)} .. (4.16)

for ‘G-L theory.

For Case II, using expansions (4.1) in egns. (3.13), (3.8)-(3.10) and then in
(3.15), we get

Z (R p) ==~ {((l-tvs+evNT)exp (- R)
x (o' + A p2)exp (-pR/vy) + V(1 -t +evE N 1)
X exp (=62 R) (o7 + Xz p2) exp(= pRy/v2)YIR(V} - v3)
. (417)
U R p) = {n(1-tv)(1-Tvi+Evi N To)exp (-0, Ry)
X [P 2+ (1 /R+X)p31 exp (= pR/vy) + v, (1 — Ty v3)
X(1-ToVi+evinty exp(—®R)[p2+(vo/R+1y) pF]

x exp (—-pR,/vy)} | €T R (vi —13) .. (4.18)

Sr=(1/R (v} - D) e ) {[(1 T 3+ €3N Tp) (1 -1V} — e 1v]) p!
+ AP exp (= (8 +p/v) R+ =% Vi +evi M T0)
X (1-ti-€T013) p'+A3p7] exp (= (& +p/v) Ry} - (4.19)
for L-§ theory and
ZRp =~ (M- +ein )+~ 0-S)p?
X exp (= (&, +p/v)R) + v (1 -Tovs +EViNT)

X [p! + (L~ Q-5;) p2lexp (= (§;+ p/v2) R)YR(v: - v3)
... (4.20)
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UR p={mA-t)(I-tvs+emnid)
X [pl+(i/R+ Ly~ Q) p2] exp (- (0 +p/v) R)+ vy (1 -1913)
x (1-tvi+et,n V) [p'+ (v/R+ L, - Q) pl

X exp (- (¢, +p/vy) R))ER (V —13) .. (42D

Sr= {1 -tV +&v3 T, M) (1 -1ov} —e 7, v]) + Li/p)
X exp (= (0 +p/vi)/R) + [1(1 = 1o +evitm) (1 - Tovs —€ Tv3)
+ L3/plexp (- (0 + p/vy) R)YER (V] - v3) . (422)
for G-L theory, where
Ly = {(1 - %)) (0, v;—av,/n)
+evin(-5, W =tV +e 1,1 D),
Ly = {(1 - T v3) (¢2v2—av,/M)
+evin (=S, 1M1 ~Tova + €T, 1 v3),
Li={(1 = Tv) (& vi—avy/M) +e VI N 155}/ = 1 v] +EN T v)),
L'z= {(1 = 1V3) (G vy —avy/M) +eViN T S;}/(l —Tp Va+EN Ty V3),
M=Li-Q M=L—-0% M=h+S, A=k +5,
At=(1 -t +en1ov3) {(1-Tov]) @ vi—avi/R+ M) - A, (€T ¥]).
M=(1-1ovi +ENTovD) {(1~Tovd) (§2v2—ava/R+ M) = A (€ o v))),
Li=(1-tpv+ennv) {1 - ovi-e1 1))
(L - Q)+ (1 =T v]) @ vi —avi/R) + €1 vi (S +71)),
Li=(1-twvi+ern?) {( - ovi-£1v)
(Ly - Q)+ (1 ~T9V3) (B3 v2 — avp/R) + €1,V (S + 1)) . (423)
Inverting the Laplace transform, we obtain
ZR, 1) = - {P,[1 +A (T= R/ vl H =Ry /v))

+ Py {1 +2; (t—Ri/v)) H(T~Ri/v)HR(A = V3) - (4.24)
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UR, V) = {vi' P, (1 = v) [(T = Ri/v) + (/R + 1K) (=R /v ]
X H(T - Ry /v))+v3' (1 —Tgv3) Py [(T~Ry/vs) + (va/R+ 1))

X (T—Ry/v)?] H(t - R,/vo)Me to ROV 1) .. (4.25)

g (R, 7) = {exp(- ¢ R) [(1-Tov2+E TN V) (1 —To v —€ T 1})
+ A (T=R/v)] H(t— R/v;) + exp (- &, R))
X [(1-Tovi +EToM 1)) (1 ~To V3 € Tv2)
+ A (T=R/vo)l HT — R\/vo)HRE To (Vi —v3) ... (4.26)
for L-S theory and |
ZR, V) = - {P{[1+ Ly~ Q~5) (t1-R/v)Ht-R./v)

+ Py {1+ (L - Q=S (1 R/v)] H(t = R /v) YR —3)

.. (427)
UR, V) = (v Py (1-To V) [1 + (v1/R+Ly— Q) (t— R1/v))]
X H(T-R/v))+v3' Py (1 =t v2)[1 +vo/R+L, - Q)
X (T=R,/v;)] H(t—R,/v))}eR (v} =) .. (4.28)

Ok (R, D)= {exp (- B R)[1 -3 +ET N V) (I -ToV{ -7 1))
X 8(t—Ry/v))+Li Ht-R/v)] + exp (-, Ry)
X [(1-tvi+ennv]) (I - Bv3—-€1v)) 8(T-R/vy)
+ Ly H(t— R,/vy)]}feR (2 = vd). .. (429)
for G-L theory, where
P =vi(1-Tgv3+€nTov3)exp (- ¢ Ry,
Py=vi(1-tvi+en T} exp (-6, Ry),
P =vi(1-Tovi+ENT Vi) exp (- 6 R)),

Py=vi(1-tvi+ent v exp (- 0, Ry). - (4.30)
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S. LONG TIME SOLUTIONS
The long time solutions can be obtained by expanding the roots mf and m% of
eqn. (3.7) for small values of p in the Taylor series. We obtain
m=N1+€) \p +0@¥2),  my=(1+e)y 2 p+O0@?).

Substituting these values of m; and m, into various relevant equations we can obtain
U and Z, which on inversion of Laplace transform provide us with the deformation
and temperatrue. It is observed that m, and m, do not involve the thermal relaxation
times T, or 1,, which ascertain that the "second sound" effects are short lived. Thus

the small time solutions are of more physical importance than those of long time
solutions.

6. DISCUSSION OF THE RESULTS AT THE WAVE-FRONTS

The short time solutions obtained above show that they consist of the two waves,
dilatational and thermal travelling with velocity v, and v, respectively. The terms
containing H(T - R,/v,) represent the contribution of the elastic wave in the vicinity
of its wave-front R, =v,T, and terms with H(T - R,/v,) represent contribution of the
thermal wave in the vicinity of its wave front R;=v,T. It is observed that the
displacement is continuous on both the wave-fronts in the context of L-S theory in
both the cases and for Case I in G-L theory but it is discontinuous for case-II in
G-L theory. The temperature is found to be continuous on both the wave-fronts for
Case I in G-L theory and is discontinuous elsewhere. The stress is discontinuous in
each case. The discontinuities are given by

[Z* - Z g, =v, e =€ To v} V3 €Xp (~ 0, R))/R(v| - v3)
[Z* - Z 1g, = v, = € To Vi V3 €Xp (— 02 Ry)/R(V - v3),
for Case I in L-S theory
[Z* — Z ), v, == PL/ROE VD)
(Z* = Z-}g, =y,:=— Po/R({ - v3), for Case Il in L-S theory
[Z* - Z)g, v s == P1/ROT - V)
[Z* - Z1g, =y, = P/R(v} = v3), for Case I in G-L theory
[U* = Urlg, =y, = (1 = To V) PL/E Rvy (V] - ¥))
[U* = Uk, =y = (1~ T ¥3) Py/€ Rv (- 13),

for Case Il in G-L theory



1162 J. N. SHARMA AND R. L. SHARMA

[0k — ORlg, = v, v == V3 (1 = To Vi + € V| To) €xp (= & R\)/R(V} —¥3)
[0k — Olk, =v, 0 == Vi (1 = To V3 +€ v3 To) €xp (= & R))/R(v} - v3),
for Case I in L-S theory
[0k — ORlg, =, 1 =2 (1 = Tg vi + € T, 1 v]) exp (~ &) Ry)/R(v; —v3)
(6% — ORlg, =v,c = Vi (1 - To V3 + £ T, 1 v3) €xp (= &2 R))/R(; — V)

for Case I in G-L theory
[0k — Orlg, =, = (1 ~To V3 + €Ty N v3) (1 ~To v} € Tg ¥})
X exp (- 0y R\)/€ To R(vi - v3)
[0k — ORIk, = v, 1= (1 = To Vi +EToM V) (1 = To ¥3 — E Ty v3)

X exp (~ ¢ R))/e To R(vi - v3)
for Case II in L-S theory
[Ok — Orlg, v, 1 = L1 €xp (- &, R))/E Ty R (v - v3)

[0 — ORlg, =v,: = Lz €Xp (- 0 R))/E Ty R (] - v3)
for Case Il in G-L theory.

These jumps in displacement, stress and temperature decay exponentially with
time and also vanish when the radial distance R increases infinitely. In case of the
conventional coupled theory of thermoelasticity i.e. for 1, =0=1, we have

K|=l+£, Kzzl, Vlzl, Vy — oo, ¢1=€/2, ¢2—9°°.

The displacement and temperature are found to be continuous at both the wave-fronts
for Case I and Case II. For 7, = 0 and 1, # O, the displacement and temperature
are discontinuous at the elastic wave-front in Case II, for G-L theory only. If we
take Cy;=A+24, C=A=C;, 0=0, =05 P,=pB, K,=K, then results reduce to
those for isotropic material.

7. NUMERICAL RESULTS AND DISCUSSIONS

The theoretical results obtained in section 4 are also computed numerically for
the zinc crystal for which the physical data is given by (Singh and Sharmal)

g = 0221, C,; = 1.628 x 10" x Nm2, C},=0.362x 10! Nm-2
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Cy3=0.508 x 10" Nm2, B = 5.75 x 10® Nm2 deg™!,
C,=39%10% J Kg! deg™!
K = K, =K;=124x 10> Wm! deg!, p = 7.14 x 103 Kgm™,
To=296° K, Gy = 1.0 = 6,

We take 1 = 1, 15 = 0, 0.02; 1, = 0, 0.02, 0.05 and compute displacement,
stress and temperature for different values of the time T and distance R, = 1.0.

The results so obtained have been represented graphically in Figs. 1-3. The
magnitude of jumps in temperature at the elastic wave-front in case of normal load
increases from negative values to become zero after finite values of time in L-S
theory, where as these jumps in case of thermal shock decay exponentially tend to
zero in both the theories at different values of relaxation times as revealed from
Figs. 1(a) and 2(a) respectively. Figure 3(a) shows that the jumps in displacement
at the elastic wave-front in case of thermal shocks at different values of thermal
relaxation times in G-L theory increase exponentially to tend to zero at finite time
and Fig. 3(b) reveals that these jumps decay exponentially indefinitely at the thermal
wave front. Figures 1(b) and 2(b) represents that the magnitudes of jumps in
temperature at the thermal wave front decay experientially and may assume indefinite
negative value with the passage of timé in L-S theory for normal load and in both
the theories for thermal shock respectively.
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1 2 3 & 5 6

T L§ \ i
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FiG. 1(a). Variation of jumps in temperature at FiG. 1(b). Variation of jumps in temperature at ther-
elastic wave front (normal load). mal wave front (normal load).
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FIG. 2(a). Varation of jumps in temperature at elastic
wave front (thermal shock).
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FI1G. 3(a). Variation of jumps in displacement at elastic
wave front (thermal shock).
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