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Rhaly8 determined the spectrum of a Rhaly matrix M regarded as an operator on
the Hilbert space l,. It is the purpose of this paper to determine the spectrum of a

Rhaly matrix M as an operator on the spaces ¢y and c, under the assumption that

diag {M} = o(l/n).

1. INTRODUCTION

Let I, ¢, ¢y be the spaces of bounded sequences, convergent sequences, and
null sequences x = (x,) respectively, normed by || x || = sup, | x, | and let };: =

{x: E |x,] <o} If A is an infinite matrix and x = (x,) is a sequence, write
n
(Ax), : = Zk a, x; if this exists; Ax is the sequence ((Ax),).

The set of all eigenvalues and the spectrum of a bounded operator T on a Banach
space X are denoted by my(T,X) and o(T, X), respectively.

By Goldberg?, if 7€ B(X), there are three possibilities for R(T), the range of
T: ([ RD =X; () RD)=R(T) = X; () R(T)=X; and three possibilities for
T-1: (1) T exists and is continuous; (2) 7! exists but is discontinuous; (3) 7!
does not exist.

If these possibilities are combined in all possible ways, nine different states are
created. These are labelled by : I, 1,, ..., Ill;. If, for example, an operator is in state

IIT,, then R(T)=X and T-! exists but is discontinuous.

Applying Goldberg’s classification to T; : = AJ — T, where A is a complex number,
we have three possibilities for T, : (I) T, is sugjective; (I) R(T;‘)aem-)(;
() R(T,)=X; and three possibilities for T, ! : (1) T, is injective and T ! is
bounded; (2) T, is injective and T ! is unbounded; (3) T, is not injective.
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If A is a complex number such that T, €I}, then A belongs to the resolvent set
p(T, X) otherwise A€ o (T,X). The further classification of o(7,X) gives rise to
the fine spectrum of T. If for example, T, is in state IIl,, then we write AE
1, o7, X).

Given a sequence a =(a,) of scalars, the Rhaly matrix M =R, is the lower
triangular matrix with constant row segments

g 0 o
M=| @ @ 0 a
a a B
For a= ( n-lr 1) the spectra of the Cesaro matrix on ¢y and c are studied in
Reade® and Wenger!!, respectively. Rhaly’ showed that if a = (n+1 1)5) where s >

1, then M is a bounded operator on the Hilbert space /, of square summable
sequences, and in another paper® he showed that M is bounded on I, if the a,’s are
distinct and lim, (n + 1)a, = 0, and he also determined its l-spectrum and
eigenvalues. Leibowitz® found the conditions for a Rhaly matrix to be bounded on
Co OF C.

In this study, we shall assume throughout that a is a strictly decreasing sequence
of positive real numbers and that L =lim, (n + 1)a, = 0. Under these hypotheses, we
determine the spectrum and fine spectrum of M on ¢, and ¢, and we give a. Mercerian
theorem.

We write S = {a,:n = 0, 1, ...} for the range of a.

2. THE SPECTRUM AND FINE SPECTRUM OF M ON ¢; FOR L = 0

Theorem 1 — The Rhaly matrix M acts boundedly on ¢ iff {(n + 1) a,} is
bounded.

PROOF : See Proposition 3.2 of Leibowitz’.

Theorem 2 — If L = 0 [which is assumed henceforth], then M is a compact
operator on cp.

PROOF : The proof is the same as in Proposition 3.1 of Leibowitz’. If M’ is
the Rhaly matrix with diagonal sequence (ap, 4y, ., a,, O, 0, ...), then the operator
M is in B(cy), the dimension of R(M’) is finite for each r, and
IM-M"|<(r+2)a,,,

Thus
lim |[M-M"]j=0.

r—-m

Hence M is a compact operator on ¢, if L = 0.
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Theorem 3 — my(M, cg) = S.

PROOF : If Mx = Ax then (ap—A)xy = 0 and (ka,,—1 -1 x,,-a;l_l Ax,_ for
all nz1. So 0 &€ny(M, cp). If m is the smallest integer for which x, =0, then
A =g, and

n ka-—ll
= H = e
Xy (j_m -—i—wl_l)xm @
for nzm+ 1. From (2), we conclude that the eigenvalues of M are simple.

Since I, Ccy we want to determine whether A =a, will result in an x for

which 2 |x, ] converges. As in Theorem 2.4 of Rhaly®, we turn to Kummer’s test
with p, = 1/na’ [Olmsted®, p. 395) and find that for n=m,

6, (A-a,,1)? a
- " o - (3)
Ixn+ll N 41
, | [,
Since "llﬂ (Pn 1% ~ Prax
- 2
vl XD DG arr e Da, )
n—x n(n"'l)ani»lx

we have x € /[,. Thus when A=a,, x&c, So m, (M, c;) = S.

Theorem 4 — ng(M*,cy* = l;) = S.
PROOF : The argument proceeds much as in Theorem 2.3 of Rhaly®. It is clear

that the matrix of M* is the transpose of the matrix of M. If M *x=)Ax, we have
Xp = )\'a;l (Xn~ X5+ 1)-

Thus 0 & ng(M*, c;) (A = O implies that all x, = 0) and hence

M*x = A\x %x,,ﬂ-(l—a—):')x,, for all n=0.

It follows that every a,ES is an eigenvalue of M*, that every eigenvalue A is
simple, and that if A€ n, (M*, c,), then

n-1

Xy = H (1-a/\) x. . (5)
j=0

Now we show that if A is not one of the a,’s then A is not an eigenvalue. If
x satisfies (5), then



782 M. YILDIRIM

| x, | ) 1-|1-a,/A| 1-{1-a,/AP
ltwasl ™" T 11-a/A] T [1-a/A(1+]1-ay/A])
___2Re(ay/M)-a, /| AP
“1-a/A[1+]|1-a/N])
So the Raabe’s test limit is lim »n ——'—x—"—l—l =0< 1
n-—» o 'xn+1l

Thus x €&/, and there are no eigenvalues except the a,’s.

Now we can compute o(M, ¢g) by using some properties of compact operators.

Theorem 5 — o(M,cg) = S U {0}.

PROOF : Since M is a compact operator, 0 € o(M, ¢g) (Rudin'®, p. 99), and if
0 =AEo0M,cy) then AEmyM, co) () no(M*, ¢p). Combining these results with
Theorems 3 and 4, we have the proof.

Theorem 6 — 0 €11, oM, cy).

PROOF : Since 0 &S = ny(M, cp) by Theorem 3, M1 exists. But 0 € o(M, ¢;),
so M ! is discontinuous. Consequently, M € (2).

Next, we show that M EIl; that is, M has a dense, proper range. Since
0 & ny(M*, cy), the operator M* is one to one. By Goldberg® (p. 59), R(M) = <o

Now let us show that R(M) = c,.
The inverse of M has matrix entries

-1

an if k - n
bu={ -a;~; .. k=n-1 . (6)
0 otherwise

(See [Leibowitz’, p. 279]) Let y=(y,) = {(-1)* a,}. If Mx = y then by (6), x, =
@ Yo=Gry Vo1 = 2(~1y for each n2 1, and so x & c,. Since y € cg, R(M) = ¢, Thus
Mell, and so 0 €11, oM, ¢,).

Theorem 7 — If A=a, (m = 0, 1, ...), then A € Ill; o(M, cg).
PROOF : Let T, = AJ—M. By Theorem 3, T, is not one to one, so T) € (3).

By Theorem 4, T,* is not one to one, so 7, does not have a dense range; i..,
T, € Il (Goldberg3, p. 59). Thus T, €1Il; and so A E IIl; o(M, cp).

3. THE SPECTRUM AND THE FINE SPECTRUM OF M ON ¢ FOR L = Q.

Theorem 8 — The Rhaly matrix M acts boundedly on ¢ iff {(n + 1)a,)}
converges.

PROOF : See Proposition 3.3 of Leibowitz5.
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Theorem 9 — If L = O (which is assumed henceforth), then M is a compact
operator on c.

PROOF : The proof follows the same reasoning as in Theorem 2.
Theorem 10 — mo(M,c)=S.

PROOF : The proof follows the same reasoning as in Theorem 3.
Theorem 11 — ny(M*, c* =1)) =S U {0}.

PROOF : For the proof, we need a lemma. In the Lemma, we do not assume
that L = 0.

The proof uses a representation from (Wilansky!2, p. 267):
If T:c~—> cis a bounded matrix operator with matrix A, then T*: ¢* — ¢* acting
on ¢ @; !, has matrix of the form Lg‘ Al

of row sums of A minus the sum of the limits of the columns of A, and b is the
column vector whose kth entry is the limit of the kth column of A for each k.

where 7y is the limit of the sequence

Lemma — Let M:c — ¢ be a Rhaly matrix. Then the matrix of M* € B(l;) is

« [L O
M-[O M,]. (D

PrOOF : For each k, b, = 0 since a E¢y and Y =L for the same reason.

Thus

(L 0 0 0 O

0 a a @& a

0 0 a a a

M* = 0 0 O a2 a

We can now prove Theorem 11. Since lim (n + 1)a, = 0 by our assumption,
L=0in (7).

If we have M*x=Ax then Axg = 0 and x,,-a;l_l (A, —Ax,, ) for nz1. So
A = 0 is an eigenvalue, with x = xq ¢y the corresponding eigenvector (for xo = 0). If
Aw0, then

n-2
X, = [‘l (l—aj/k)xl .. (8)
i=

for n > 1. The rest of the argument is now a minor modification of the proof of
Theorem 4.

Theorem 12 — oM, c)=5 U {0}.
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PROOF : The proof follows the same reasoning as in Theorem 5.

Theorem 13 — o(M, 1,) =S U {0}.

PROOF : By Cartlidge?, if a matrix operator A is bounded on c then
(A, ¢) = o(A, I,.). So this is a corollary of Theorem 12.

Theorem 14 — 0 € III, o(M, c).

PROOF : By Theorem 10, the inverse operator M ! exists. Formula (7) shows
that every y € R(M*) has first component zero, so M* is not onto. Hence by
Goldberg® (p. 59), M -! is not bounded.

On the other hand, 0 is an eigenvalue of M* and so M* is not one to one. So
M does not have a dense range. Thus we have proved that M & III,.

Theorem 15 — If A=a,, (m = 0, 1, ...), then A € 1ll; o(M, ¢y).

PROOF : The proof follows the same reasoning as in Theorem 7.

Theorem 16 — Suppose that A= 0 and that A =a,/(a, — 1) for any m. Then
the convergence field of A=AJ+(1-MM is c.

PROOF : If A = 1, there is nothing to prove, so suppose that A= 1. By Theorem

11 and the choice of A, ﬁ I—-M has a bounded inverse in B(c).

-1
So A-l=(A-1)1 %I—M € B(c). Since A is a triangle and A € B(c),

the fact that A -1 is also conservative implies that ¢, =~ ¢ (Wilansky'2, p. 14).
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