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GROWTH OF COMPOSITE INTEGRAL FUNCTIONS

INDRANT LAHIRI*

Department of Mathematics, University of Kalyani, West Bengal 741235
(Received 19 September 1938)

In the present paper we study some growth properties of log T(r, fg)
relative to T (r. f) and T (r, g) for integral functions f (z) and g (2).

1. INTRODUCTION AND DEFINITIONS

Let f(z) and g (z) be two integral functions. We suppose that T (r, f), M (r, f),
N(r,a,f), 8(a,f), 8(a,(2), ) log* x etc. bear their usual meanings in the Nevan-
linna theory of meromorphic functions (cf. HaymanZ2). Clunie! (see also Singh?) studied
the comparative growths of T (r, fg) with T (r, ) and T (7, g); he showed for trans-

cendental integral functions f/ (z) and g (z) that lim Tr/8) = oo and lim
y >0 T(r’ f) r—> oo
T(r,f8)

70 2) = oo, Singh” proved some comparative growth properties of log 7 (r,/g)

and T (r, /'); also he raised the question of investigating the comparative growth of
log T(r,fg)and T (r, g) which be was unable to solve. In the present paper we prove
a few theorems on the comparative growths of log T (r,fg) with 7' (r, f) and, as well
as, with T (r, g). Throughout the paper we denote by f (z) and g (z) two integral
functions with orders (lower orders) Pr(As) and Pg (Ag) respectively.

Definition 1—The number g is said to be the hyper lower order of g (z) if and
only if

X = liminf —loglog log M (r.g)
r—>co log r

It is clear that /\; < Ag.

Definition—26— A function Pg () is called a proximate order of g (z) relative to
T (r, g) if and only if () pg (r) is real, continuous and piecewise differentiable for
T(r, 8

r>ro, (ii) lim Pg(r) = Py, (iii) lim rlogr P’ (r) = 0, (iv) lim sup P
r—> 9 rtgln)

r—>o r—»o0

= 1.

) pEP (1) | . . .
Proposition 1—For 8 > 0 the function r¢ ¢  is ultimately an increasing

function of r.
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For,

d p+E- P () ,

e A ={Pg + 3 —Pg(r) —rlogr P, (r)}
P 45-1-p (1)
rd g

for all sufficiently large values of r.
2. THEOREMS AND LEMMAS

Singh? proved a theorem on the estimation of lim sup _log T(r.f8) , Wwhich
o0 T(r,f)

after modification by Zhou® takes the following form.
Theorem 1—Let f (z) and g(z) be integral functions of finite orders such that g

(0) = 0and pg < A7 < Pr. Then :‘f‘w loﬁ(:}’ifg_) =0,

Here we remark that for the truth of the above theorem the hypothesis g (0) = 0
is not essential. In the following we prove a comparative growth property of
log T (r, fg) and T (r, f) under some weaker hypotheses.

Theorem 2—Let f (z) and g (z) be two nonconstant integral functions such that

.. o log T(r.fg)
Ag < M € Pr < oo, Then lim inf —=——"£L27 =0,
r—>00 T(r;j)

Proor : To prove the theorem we need the following lemma.
Lemma 1 (Theorem 1, Niino and Suita%)—Let f (z) and g (z) be integrai functions.
If M(r, g)>—21°

€

| g (0) | for any € > 0, then we have

T(rnfe)<(+9T(M(r,8), f).
In particular if g (0) = 0, then T (r, fg) < T(M (r, g),f) forallr > 0.
Proof of the Theorem—In the present case for e = 1 and for all large values of

2 T ! l2(0)]. So we obtain from Lemma 1 that for all

r we see that M (r, g) >
large values of »
T (r,f8) < 2T (M (r, 2), f). (1)
Since 29 < A7, we can choose € (> 0) such that Ay + ¢ < Ar — e. Also for all large
values of r, r;\f_‘,2 <T@ f[f) < r'fh and for a sequence of values of r tending to
infinity log M (r, g) < rlﬂh.
Now from (1) we get for all large values of r

T(,f8) < 2T(M(r,8),f) < 2{M(r,g) 7 "
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and so for all large values of r
log T(r, fg) <log2 + (Pr+ €log M (r, 8).

Now for a sequence of values of r tending to infinity we get

A +¢
logT (r,fg) <log 2 + (Pr+e€)r?
A —¢
<log2+4+(pr +€¢r 7 .
So for a sequence of values of r tending to infinity we obtain

log T (r,f8) log 2 pr + € .
< P + and hence lim inf
T(r,f) , rAf /2 re2 oo

log T'(r, f8) _
T(r, f) ’

This proves the theorem.
Singh? proved the following theorem.

Theorem 3—Let f(z) and g (z) be integral functions of finite orders with pg > Pr.

; log T (r, f£)
Then lim su 2 & = oo
¢ r—>oop T(r,f)

The analysis of the proof of Theorem 3 shows that the theorem is true, in general,
only if As > 0, which assumption is not explicitly stated in the theorem. The follow-
ing example also strengthens this comment.

Example 1—Let f (z) = z and g(z) = ¢°. Then Pr = Ay = O and py = 1, so
Pr < Pg. Also fg(z) = e’ and hencelog T(r,fg) = logr + O (M, T(r,f) =log

r,forr > 1. Therefore lim sup log 7 (r./8) = | which iscontrary to Theorem 3.
¥ 00 T (l’, f)

In the following theorem we see that the conclusion of Theorem 3 can also be
drawn even under somewhat relaxed hypotheses.

Theorem 4—Let f (z) and g (z) be two integral functions such that

) _ . log T(r,fg)
0 < Ar < Ag < oo. Thenlim sup —= -0/ 80
‘ e T T T(r[)

Proor : We know that for r > 0 (Niino and Yang5)
1 1
T 9z 5tosM{ g m( e ) +ow,s). )

Since As and Ag are the lower orders of f (z) and g (2 rcspe,‘ctively, for given e (0 < ¢
< A7) and for all large values of r we getlog M (r, /) > r Y and log M(r, g)
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> rlﬂ E So from (2) we get for all large values of r
A -«
T(r.fe) 24k M(rl4, ) +o ()} 7/

A ¢
LA M (4,87
which gives for all large values of r

log T(r,f8) = O(1) + (Ar — €) log M (r]4, g)
S0+ -9 )

Also since lim inf w
r—>o g r

A +e
r tending to infinity T (r, f) < r / * Hence for a sequence of values of r tending to
infinity we obtain from (3) that

= Ay, it follows that for a sequence of values of

log T(r,f 8) o A -« 1
+ (Ar — 4) 9 —
T(r,f) > rlfﬂ (s €) (r'4) rlfﬂ
which gives lim sup IQW = oo because we can choose ¢ (0 < € < Ar) such
r—>o00 3 ’

that Ar + € < Ag — . This proves the theorem.

Now the following three theorems give estirations of the growth of the ratio

lp_g_TT_;_r(_r%ﬂ, under different circumstances, as r tends to infinity.

Theorem 5—Let f (z) and g (z) be two nonconstant integral functions such that

Pr and Py are finite. Then

im ing 108 T(r.f8) y
lu:l_::)l T(, 8) < 3. Pr2v.
Proor : It is well known that Hayman?, p. 18.

T f)<logtM(r, )3T (@2r,f) «.(4)

where r > 0 and f (2) is an integral function. Also we know for integral functions
S (2) and g (z) that for r > 0 (cf. Niino and Suita%)

log M(r, fg) < log M (M(r,g),f) ..(5)
Since f (z) and g (z) are nonconstant and Pr is the order of f(2), we get for all large r

and given ¢ (> 0) that

T(rfe)<log M (M(r,g8),f) <M (r, g} -
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So for all large r

logT(r,fg) € (Pr + €)log M (r, g) ..(6)

and hence

... logT(r. f2) .. . logM(r, g

1 f =" < lim inf ————22"—

iminf TG (b7 + 9 lim Inf =)
Since « (> 0) is arbitraty, it follows that

.. log T (r. f®) . ..o log M(r, 8

lim inf ——="— < Pr lim inf ——->5>~. ..(7

e T(r. g po>oo T (r,8) O

Let pg (r) be a proximate order of g (z) relative to T'(r, g). Since lim sup
r—>o0

T—'(L(%—)—« = 1, it follows that for all large values of r and for given ¢ (0 < e<1) T(r,g)
r?

P (r
< (1 4+ ¢ r 0( ). From (4) we get, on replacement of /by g, for all large values
2r
ofr, logM(r,g) < 3T(Q2r,g) <31 + ¢ (2r)'9( ) and so for all large values of r

(2r) #g+8

log M (r,g) <3(1 + e)—~——~'—“—_'—@)~, where 8 (> 0) is arbitrary.

: (Zr) 4 g

p tE-p (r .

Since r¢ ¢  is ultimately an increasing function of r, it follows that for all large r

+5 T
log M (r,g) < 3(1 + 2% ) o' . (8)

.. . T(.g _ ) . . .
Again since lim sup o Il 1, for a sequence of values of r tending to infinity
r—>eo
we abtain
r

T(hg)> (1 - ¢re™ o)

From (8) and (9) we get for a sequence of values of r tending to infinity

+8
log M(r,g) <3 [ 2 T(g)
+5
which gives lim inf S8M (8 3 1H+€ BT o ed(>0) ande(0 < ¢ <
r—> T(r,g) 1 — e
1) are arbitary, it follows that
liminf 8M (2 5. .(10)

r—00 T(r,g)

Theorem follows from (7) and (10). This proves the theorem.
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Theorem 6—Let f (z) and g (2) be two nonconstant integral functions such that
Pr and Ag are finite. Also suppose that there exist integral functions at (2)) (i=1,2...,
nyn < oo)such that (i) T(r, a1 (2)) = o0 (T (r,g)} asr - oo fori = 1,2, ..., nand

(i) 21 5(as (z),g) = 1. Then

lim sup 18 7 (/8

. Pf.
m s T(g S

Proor : To prove the theorem we require the following lemma.

Lemma 23—Let g (z) be an integral function with Ay < oo, and assume that ai(z)
(i=1,2,..,nn < oo0) are entire functions satisfying T (r, ai (2)) == o {T (r, g)}
then if

n
3 , 8 = 1 we have lim ) —
Z (ai (2), 8) we have r_lf::’ fog M (r, &) -
Proof of the Theorem—From (6) we obtain for all large values of r and for e
(> 0) arbitrary
log T(r,7g) < (Pr+ ¢)log M (r,g).

) log T(r,f2) - log M (r, g)
Hence we get h:ll ::xp “Tre < (Pr+ € lurn_’sotcxp T 2)

and since € (> 0) is arbitrary, it follows that

: log T(r,fg) . log M (r, g)
—_— Y < —_———— (1
lim sup =g Prlim sup —=r8) (tn

The theorem follows from (11) and Lemma 2. This proves the theorem.

Note 1 : When, in particular, as (2)’s are constants the assumption (i) of Theorem
6 is obvious and so it need not be stated explicitly.

Theorem 7—Let f (z) and g (z) be two transcendental integral functions such that

(i) Pg¢ < oo and the hyperlower order of g (2), 4g is positive
(ii) Ar > 0, and

i) 9 (0,f) < 1.
Then
log T(r,fg)

Ii o8 LS8
s T T =

ProoF : To prove the theorem we require the following lemma.
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Lemma 3 (Theorem S, Niino and Suita®)—Let f (z) be a transcendental integral
function, g (z) a transcendental integral function of finite order, y a constant satisfy-
ing 0 < % < 1, and « a positive number. Then we have

(1+a),
T(r,fg) + O() > N(r,0,fg) > log — 1<1>Vg{1»[;{\(((:rr))11/’(1+m) gg)) (c))({)}
—0 (1)]

Proof of the theorem—Since § (0, f) < 1, for given ¢ > O there exists a

N(,0,f) _5 —e
Tep > 1T en—e>o.

Hence from Lemma 3 we get for a sequence of values of r tending to infinity

as r — oo through all values.
sequence of values of r tending to infinity for which

T(r, fg)+ O0(1) = log %}—

(1 = 3(0,7) — & T {M@)UA*), g), £} — log M ((qr)t/(+®),
X 2) 0 (1)

log M ((nr)1'0*),g) — O (1) ’
-..(12)

Since g (2) is of finite order Py it follows for given ¢ > 0 and for all large values of

p +e
r, log M (r,g) < r9 . Sofrom (12) we get for a sequence of values of r tending to
infinity

T(.f8) + 0 () = log —

(1 =3(0,f) — &) T{M ((nr)V1Q*), g), f} — log M ((nr)t/(1+),
X g)0( )

an %0 o ay

So for a sequence of values of r tending to infinity
log T(r,fg) + O (1) == O (logr) + log T {M ((r)/0*), g), f }
log M ((nr)L'(1**), g) O (1)
- - ...
+10g [ | 5 0 ~ G T i (e ) O

Since f(2) is transcendental, lim 1_’1_(5_1"_)__
r—>oo og r

= oo and so for given positive number N,

however large, and for all large values of r T (r, f) > Nlogr. Therefore, we obtain
from (13) for a sequence of values of » tending to infinity

logT(r,fg) = O(1) — Ologr) + log T {M (ar)ti(*xy g), f}

+1 log M ((n r)1'A+e)_g) O (1) ]
o8 (T —20(,/) — ) Nlog M ((r)lii—g.

(equation continued on p. 906)
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= 0 (1) — O(log r) + log T {M ((yr)/(0*), g), f}

o
+ '°‘[' TU=-30,f)— N

where N is 80 large that

_ o)
(1—-30,f) -9 N

Hence, for a sequence of values of r tending to infinity

log T(r,fg) > O (1) — O(logr) + log T {M ((nr)1/(0+), g), f}. ...(14)

1 > 0.

Since g (z) is of finite positive hyper lower order Ag, it follows for all large values of r
that

log log log M (r, g) } 2
log r g

log M (r, g) > exp (r1/2 '\”). ...(15)

Again since f (z) is of positive lower order A7, we get for all large values of r and for
O< M< s

logT(r,/) > Mlogr. ...(16)

From (14), (15) and (16) we obtain for a sequence of values of r tending to infinity

g 12(1re)
logT(r,f8) = O(1) — O (logr) + Me (vr)

which gives for a sequence of values of r tending to infinity

log T (r, ) 0 (log r) (1o 20+)
ogT(r, g ogr e
—2=2 20 S 0(1) - - MT(r,
TG, 8 M= 1, + MR
X, [2(1+e)
e(™
20N+ M rEo
rd
because g (z) is transcendental and
. log T (r, g)
lim sup —=—-220L - p,,
oo | logr ’

This inequality gives

. log T(r, fg) -
lim sop =71, ) <
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This proves the theorem.

The author is thankful to the National Board for Higher Mathematics for giving
him a research award in the Department of Mathematics, University of Kalyani during
the tenure of which the paper was prepared. He is also indebted Professor B. K. Lahiri
for encouraging and inspiring him during the preparation of the paper.

REFERENCES

[

J. Clunie, The Composition of Entire and Meromorphic Functions. Mathematical essays
dedicated to A. J. Macintyre, Ohio University Press, (1970), pp. 75-92.

W. K. Hiyman, M:romorphic Functioas. Clarendon Press, Oxford. 1964.

Qun Lin and Chongji Dai. Kexue Tongbao, 31 (1986), 220-24,

Kivoshi Niino and Nobuyuki Suita, Kodai Math. J. 3 (1980), 374-79.

Kiyoshi Niino and Chung-Chun Yang, Factorization theory of Meromorphic Functions and
related topics. Marcel Dekker Inc. New York. 1982, pp. 95-99.

Mitsuru Ozawa, Kodai Math. J. 8 (1985), 25-82.

Anand Prakash Singh, Kodai Math. J. 8 (1985), 99-102.

8. Zhen-Zhong Zhou. Kodai Math. J. 9 (1986), 419-20.

R

S



