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Fore < 1,let S, C, be the classes of regular analytic functions in the unit

disc E which are, respectively, starlike of order « and convex of order «, and
let X be the subclass of close-to-convex functions f defined by

Re (zf(z) | $(z)) > 0, ¢ € S:

and let ¥, k> 2 be the class of functions of bounded boundary rotation
at most kx. In this paper sharp bounds on the curvature of the image of
| z]=r 0 < r < 1,under a mapping / belonging to the classes C,, K and
Vi, have been obtained. The main tool is the interesting inequality, for
fES;,[z( = r, given by

fm(ﬂ

P=r (l—r*)log;+r

a *rz)ff;z)

‘f(z)<l+r+zrl0g [(l—r)e
£

< Re

whose elementary proof has been given.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let A denote the class of functions regular analytic in the unit disc
E = {z] | z| < 1}. We shall need the following subclasses of 4:

(i) The subclass P of functions whose real part is positive in £ and which have
the value 1 atz = 0.

(i) For« < 1 the subclasses S, Co, K and for k > 2 the class Vi of func-
tions f which are normalized so that f(0) = f'(0) — | = 0 and which are defined

by the following conditions :

resiit:@—(-9pa+uzeEper (1)
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2f'(2)
#(z)

(Si@)zp o
(Su2)/2y HEDE

f/ € Kiff for some ¢ € Sy =pz).zEE pE P ..(3)

.4

fE Viiff zf'(z) =
Sla S2 € S: :

The subclasses S:, Cu, K and V3 are respectively, classes of functions starlike
of order a, convex of order «, closed-to-convex and of bounded boundary rotation
at most km. We shall denote the subclasses Sy and C, respectively, by $* and C.

From (1) and (2) it is clear that

fe Cuiff zf(z) € §*, 0 < 1,z € E. ...(5)

o

S is the extensively studied class of regular univalent functions in E normalized
so that f(0) = f’(0) -1 =0. It is well known that for 0 L a < 1, §F € §,

-} <€ae<1,C €S, KES and for 2Lk 4, Vi € S. However, outside
these ranges of the parameters « and k mentioned above, C, and V% are only locally
univalent. Further, V, = C.

For a locally univalent function f in E the curvature X : (z) at the point w = f(z)

of the level line, i.e. the image of the circle | z | = r under the mapping f, is given by
1 o ”(Z)}

K (@ = —,—~—Re{l AL (6

O = T7Er U e ©)

Let K® and K% denote respectively, the infimum and supremum of K’ )
-7 T r

for | z | = r when f belongs to a certain subclass B, of locally univalent functions
in 4, which is normal and compact. Zmorovic (1965) had obtained precise values

of _I_(f:‘ and I?f:‘ for 0 < « < 1 and Korickii (1955, 1960) got precise bounds for
certain subclasses of locally univalent functions. For 0 < « < 1 the exact values
of _I_(f"‘ and K°* had been obtained by Zderkiewicz (1973) whereas for « = 0 the
sharp values had been obtained by Zmorovic (1952), Keogh (1954) had obtained

the value of {(f, and Eenigenburg (1970) had obtained the value of the infinimum

of K: (z) for f belonging to a subclass of Ce. For the class ¥ Noonan (1973) had
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obtained the precise bounds. But to the best of our knowledge the precise

bounds f'_{f“‘ and Ef“ for « < 1, where « is allowed to be negative and also the values

of {(f and I?f are not yet known. Further, the value of {(f and bounds for some
other classes of univalent functions are known (Mirosnicenko 1951, 1965) but the
value of I?f is not yet known. Since for — } < « < 0 the functions of the class C=
are univalent it is of interest to extend these results to negative values of «. In the
present paper we give a method by which one can obtain precise values of {(f, K :

when B is any of the subclasses defined above. Our method, moreover, is different
from the methods used earlier and depends upon an inequality (stated in Theorem IV),
for starlike function, which is of interest in itself.

We prove the following :

Theorem I — If f &€ Cy, o < 1, is the class of functions defined by (2) and Kf“

and I?f" are defined above, then

m (1 p— r2)1‘u
Ko = ———for 0 a1 (D
1 i 1-2¢0
:( :—’) (14 Qx—1Dr),a<g0 ()
and
_ g1 (1+r2-2ar2)/2r
[ 7]
(—rz)“logl+r I —r
1 4+r 1
for a < —_ -(9)
2 (I+r)log§t’
_ 14 (1= 29) 1+ r 1
= Ty o 5 - 77 <e< L. (10)

(1 + r)log 1%

The above inequalities are sharp and the extremal functions are given below
where equality, in each case, is attained at z = r :

(i) For equality in (7)

z
Zf'(Z) = [(l __ Ze“)l(l - Ze_“)l_}‘]z(l—“)’ 0 < A < 17 0 < a <1 ...(11)

and cos § = r.
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(i) For equality in (8)

zf'(z) = a—:;—z??(—,:;), 0. ...(12)

(iii) For equality in (9)

Z

#'(2) = (1= 27~ (1 + 2 A=y I<agl --(13)
where A satisfies
14 r 1+ r2 1+ r
A(l~a)logl_r:1+(ar- P )]ogl_ . ..(14)
(iv) For equality in (10)
z
F'(2) = 1= s’ . (15)

Theorem 11 — If f € K is the class of functions defined by (3) and Kf and sz

are defined above, then

K _ (1 —+ r)?

Ko=ra—mpr =9 (16)
and

> S 4r | - p\(1Er2)ie

K, = (1 — r?) (1 — r) [ l n r] (07

log
i r 1 +r
if l———mr+r2>%log1~—r
_Q—=r+ r3)? r 147
- r(l—-r)2 fl—r_}_r2<%log1__r' ..(18)

The above inequalities are sharp and the extremal functions are given below
where equality, in each case, is attained at z = r:

(1) For equality in (16)

f(2) = f{’;zjz | ..(19)

(i) For equality in (17)

() = (l+§)1}10g1_~j,—1<)‘<1 .(20)
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where A satisfies

+r 1 4+ r 4 r
/\]og1 r_2—- p logl_r-
(itiy For equality in (18)
z z
R el)

Theorem III — If f &€ Vi(k > 2) is the class of functions defined by (4)

and K‘:’C and 1?:" are defined above, then

1 (14
K- L (1 - :) (1 — kr + r2) (22

and

— . p2
K:k = l—r—r [6(1 —_ ,,2)(

The above inequalities are sharp and the extremal functions are given below
where equality in each case, is attained at z = r;

(1+r2)/2 —(1+2)/4
) R g L ’] . ..(23)

1 +r 2r 1 —r

(i) For equality in (22)

, 1 1 — z)\si2
1= (r3) ey

(ii) For equality in (23)

1 1 (k+1)/2 _ ,
ro=[a=s (1557 0+ 2o —1<a <

1 -z
...(25)
where
1 +r 1 4 r? 1 +r
Alog g =1 ————logy—— ...(26)
and
1 — 2 l
cos b = o [( tr_ (1 + r2)]- -..(27)
Theorem 1V — If f € S* is defined by (2) fore = 0,z € E, | z | = r, then
12 @) 2rlog | — 12 2
1 — < Rez ...(28)
(1—r) f(z)\l—-r+( — 1) log | 1+ r
r
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Both sides of the above inequality are sharp. For the left-hand inequality
equality is attained at z = r for functions of the form

z
f@@) = (= 26 (I = ze- )i’ 0 ALK ], yreal ...(29)

and for the right-hand inequality, the extremal function is given by

z

1@ = Togma o S AS] G0
where A satisfies

2 log i—j—: — log [(1 Lop @ ] (31

the equality being attained for z = r.

Corollary 1 —f f€ S}, 2z € E, z =r, « < 1, then

o+ (1—n (- |[LD g R LD
= _j_’(_Z)
L+ —20r 2rlog|(1-—r)2(1 )
< = ] + p ...(32)
(1 —r3)log 1=

Theorem IV, besides being a useful tool in deriving bounds on curvature, is of
considerable interest in itself because it gives bounds on Re zf'(2)/f(z) when | f(2) | is
fixed and f € S* and is to be compared with the following inequality of Twomey
(1970)

rlog|{(l + r)® f(z)
<1+ +r lzl=r<l, fE S* ...(33)
(—r)log1

)
o)

In fact, the region of variability of log f( )for fixed z jﬁ,((z)), fe SsS*, ze€ Eis

not yet known though it is easy to see that thls is a convex region and the inequalities
(28) and (33) give partial solution of this problem. It may also be remarked that
the left-hand inequality in (28) can be obtained from the Herglotz (1911) formula
for functions of the class P and the right-hand inequality is derivable from the
Hummel (1958) variation method.

Our method of derivation of (28) is quite elementary and shows that the region

of variability of log <~ f ) for fixed z )}((Z)) , £ € S* lies within a circle whose centre
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'@

and radius are explicit functions of z 7 and } z | . Further, we also obtain the

following:

Theorem V—-If p&E P,z€ E, | z| = r, then

! 1
j I—-na- t'iz)__+rztz(21 — r) Rep(2) 4 <Re I o(i2) di
0 0
1 a ?) d
— 12r%) Re p(z) dt -
QJ (T—r) + (1 -5 — 1) Rep(z) --(34)

These inequalities are an improvement on the results of Robertson (1964)
whose technique can hardly be adopted when Re p(z) is fixed. Finally, we mention
that our method also provides us with a tool to obtain the radius of starlikeness of
that subclass of 4 for which f(0) = f'(0) — 1 = 0 and Re f'(z) > 0, z € E. But
the expressions involved are rather complicated and we only mention that it has been
shown (Singh and Singh 1977) that this is greater than 0.8534.

2. ProOFs OF THEOREMS IV AND V

We need the following:

Lemmal —Ilfz€ E,jz|=r, 0t ] and p € P, then

At —2(1 — £2r3) [(1 — t?r®) Re p(z) + it(1 — r2)Im p(2)] < At
B =B

p(tz) + =
...(35)
where
A=Q0-r) =00 -1 — [ p2) —al?)
B =201 —2r2) [t(1 — r?) + (1 — 1) (1 — 1r2) Re p(z)]
and
1 4 r? 2r
AT TP T I
For p € P, z, £ € E, the function
_ p(z) — p(&) 1 — Ez .(36)

o= o T s 7 —¢

is analytic in E and satisfies | F(z, ) | < |. Hence, the function

Fz, ) — F(0,8) | (37
1 — KO, %) Fz, &)

¢(z> E) =
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satisfies the conditions of Schwarz lemma. On using
l¢(z,B) | < | z] ...(38)

putting z = tf and changing £ into z we obtain the lemma after some elementary
calculations.

The expression (35) can also be put in the following form:
pltz) — 1
t ]
A+2(1—2r2)[1 —r2—(1+r2) Re p(z)--21r% Re p(z)—i(1—r2) Im p(z)]

A
B Sz

...(39)

Lemma?2 —1f f€ S%,z € E, | z| =r, p(z) = zf'(2)/f(2), then

i 1

(I—=r3 /(@ 4 . i} (1 — r2)yde
log{ (Re p(2)) z } - (§ B dr —ilm p(“)oj t(l—r3)y4+ 1 -—-10Q ——trz)Rep(z)!

dr. ..(40)

wlm

1
<]
0

It is enough to note that if

z % = p(z)

then
b 1 (tz) ~
_(z) — I pltz) — 1
log . = : dr.
0

On integrating the expression, inside the modulus in the left-hand side of (39) we
obtain (40).

Proof of Theorem 1V

Taking the real part of the expression under the modulus sign in (40) we obtain

1 ' 1
(1 — r%) /() +S%"’\!<I
0

’ log | (Re 7)) = .

rd

Hence we have

(=110 ¢

'°gi Rep(d) z |S
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which gives the left-hand inequality of (28). Further

1
24
< I M (4D

(1—r2 f(2
—log| Rer z

The integral on the right-hand side can be evaluated explicitly and gives

1
24, 2aRep(z) —1—|p()|* 2y (] —
E 5 A= Re p(z) — T = (Re p(2))? [{(1 + r2) — (1 = r2) Re p(z)}
0

1 [ +r
x—2710gl——_—r+logRep(z)]

2 s ] 1
< {(1 +r?) — (I — r*)Rep(2)} »2710g Ti——: + log Re p(z).

...(42)
Combining (41) and (42) we obtain the right-hand inequality of (28).

The case of equality can be directly verified. One only needs to notice that
on account of freedom of rotation we may take z = r and further that equality will
hold only when p(r) is real.

In order to prove corollary 1 we observe that f € S* I'ﬁ‘z(f—(z))l_m ESHa<l.
z

We remark that the right-hand inequality of (28) can also be written in the form:

o S(2)
R zf'(z) 14t o log| (1 — ’._)_Z_Z_l
ef(z)\l’—’z_{_l—ﬂ I+r ..(43)
log1 — -

which gives the following:

Corollary 2 —1f f € §* in E and | /(z) | < (=, then

2f'(z) 14 r2

The left-hand inequality of (21) yields

Corollary 3 — If f € S* in E, then

7@ > | 151) ’2(1 — re). .(45)
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Proof of Theorem V

If we integrate the expression under the modulus sign in (35) and then take its

real part the theorem follows by argument similar to that used for proof of
Theorem II1.

We note that if p € P, and

z 1
1
@ =+ | p@ dz = | poez) a
: 0 0

then g € P. Robertson (1964) had shown that such functions g are subordinate
1

1 — )
to j TT% dt. In our case Theorem V gives the bounds on Re g(z) when Re p(z2)
0

is fixed. The method of Robertson does not apply to such situations. We further
notice that both sides of the inequality (34) are monotone functions of Re p(z) and
hence on taking extreme values we have

1

— 1+ %log(] -+ r)gReIp(tz)dtg -1+ =l’i~log1_~ ; ...(46)
0
which had been established by Robertson (1964).
3. PROOF OF THEOREM I
In view of (4) if f € Ca, 2f'(2) = #(z) € S and therefore
] zf"(2) 1 z¢'(2)
k' = n R {1 7 } = R s Sa+
=TT U T e T Tea T e P €S
Hence
. 1 z$'(2)
K = min Re .
=t gesy 9@ 2)

In order to obtain this minimum, in view of (32), we need to find minimum of the
expression

F(i) = IT far-t 4 (1 — a) (1 — r2) eali-=), ¢ = I ‘ﬁgl) . .._(47)

It is easily seen that for « > 0 the minimum is attained for

t = (1 — ra--=
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and because this value of ¢ lies within the range of variation of ¢ this gives the
minimum. We thus obtain (7). If « < O then the minimum is readily seen to be
attained where 7 is minimum, i.e.

t = (1 4 r)xi-=
and this yields (8). The cases of equality for (7) and (8) can be ascertained by direct

computation.

In like manner we see that

K = min 2$'(2)

r T S T T N e

and we need to find the maximum of

) = o llog 1 + 4] - r:l’og: o ...(48)
where
4= 0ENAEA=200,00 4
_G=n0— (=20,
and t= ' 4’(72) l lies in the interval
1 1
[(1 T (1= r)2<1—=>]' (49

It is readily confirmed that the maximum of F(¢) is attained for ¢t = e'-41 which
is the root of F'(t) = 0.

- For this value of ¢ the value of F(r) is seen to be given by (9). This establishes
(9) except for the fact that we still need to ascertain that ¢ lies in the interval given by
(49). Equivalently we need to find if the following holds for 0 < r < 1

Q= d—(0=20r) , 147+
2r logl-—r<1
A+ +0—=20r) . 1+r

< 2,( = log 7 - ...(50)

N The left-hand inequality is always satisfied but the right-hand inequality is satis-
fied only if
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1 i
« < ; r_ — (51
(1 + r)log
1 —r
However, if
1
oI 1 el ..(52)
2r 1 4+ r
(1 + r) log —

one easily confirms that F(#) is a monotone increasing function of 7 and hence its
‘ L
(I — ryxi—=)
confirmed by direct computation.

maximum is attained for ¢t = This gives (10). The case of equality is

4. PRrOOF OF THEOREM II

In view of (3) we have to find the extreme values of

1 p'(z) | #f'(2)
R *.
SoTeT Rl t fobrerses ©3)
We need the following :
Lemma 3 — If p € P, then
1 2 ! 1 2 1
R e L et s K B C)

As p(z) and zp'(z) satisfy the following well-known inequality

2p'(z) — 3 (p%(2) — 1) | =T l p(22) —al’ ...(55)
where a and p are defined in Lemma 1, we obtain for p(z) = | p(2) | e'®
1y 1+1p@ |2 zp'(2)
[ (101 = g7 ) = @ Jeost + SRS < 2R TG

R _l+ipr@ 12
<[*(“"Z)' 1p(z)|)+”]°°se 3170 |
..(56)

It is easily confirmed that the minimum of the left-hand side and the maximum
of right-hand side are attained for 8 = 0 and this gives us (54).

Proof of Theorem II -—- Taking into consideration (53), (54) and (28) and using
the notation | p(z) | = x, | f(z) | = y, we find that for

]”"gxgli: . (57)
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and

r r
Tro < <@ 69

we need to obtain the minimum of

1 1+ r2 1 — r2
F(x, y) = Xy R R + ; J’] . {59)

and maximum of

log {(1——r2)y}
_ b bY4 e 1 1 4+ r 2r r
F](xsy)—xy 1—]‘2—";«—‘_1—"_’—1—“’2 l+r e
logl_r

...(60)

This reduces the problem to finding extreme values of functions of two real
variables. It is readily verified in the case of (59) that the roots of

oF _n_ OF

ax (x’ J’) - - ay (x’ y)
do not give the minimum and that the minimum is attained for x == i : and

r . . .
y = TFrE and this value is given by (16).
The case of equality is confirmed by direct calculation,
In order to maximize F,(x, ») given by (60) it is found that the equations

OF, _ o _ oR,

0x day
give

1—r2 147

X = T Iogl — ...(61)

and
— r)2 1
rlog(Q_;_’ly) =2 — (1 + 7+ r)log 1 L. (62)

The value of x given by (61) satisfies (57) because

r 1 +r r
T Steer— <g—7mp
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and the value of y given by (62) satisfies the right-hand inequality of (58) because

r 1 +r
TrryeStler—

but it satisfies the left-hand inequality of (58) if

_r
1 —r+r

1
> ¢ log {1 .(63)

The inequality (63) does not always hold and in fact the equation

_r 1 1 +r
I —r+ r? 210g1-—r

has exactly one root r, such that} < r, < 1. This proves (17). When (63) does

. . . 1—r r
not hold the maximum value of F,(x, ) is attained for x = g and y= m2

and the corresponding value of KX is given by (18). The case of equality can be
r

directly confirmed.

5. ProOF oF THEOREM II1

Let us put
k1=é~(—§--—1), ‘S.l(_z)]—_:uand S—:(i)l=v ...(64)
where v and v lie in the interval
1 1 '
[(1 + ) (T —=rp ]' ...(65)

In view of (4) we need to find the extreme values of

i 13} S S
K: () = - z;;x-ﬁ Re [(k1 + 1)z Sl((zz)) — kyz Sg((zz)) . ...(66)

In view of (28) and (66) we need to obtain the minimum of

1 vk R 14r  2rlog[(1—r)u
i = g 4 o0 g [ 20y
| riioey

1
—r
...(67)

and the maximum of
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vk1
Fyu,v) = — s
14+r 2rlogl(} —r)Pu
X} (ky + DYy — + gl I)Jrr] —ky(1 — r2) v
1 ——rz)logl_r
...(68)
when u and v lie in the interval given by (65).
It is readily confirmed that the equations

g ~0=2

F Fyu,v) = 0= o Fy(u, v)
do not give the minimum. Hence the minimum is attained on the boundary for

1 1 D -
U= m and v = H—_‘T)E This yields (22). The case of equality is easy to
check for the function given by (24).
Further, the equations

0 _n_ 0

u Fyu,v) =0 = P Fy(u, v)
give that maximum is attained for

u = e(1 — r)1-N22r (1 4 p)1tr)2i2s ...(69)
and

v = Yo .(70)

(1 — r2)2 log T

This gives (23) and simple calculation confirms the case of equality for the function
given by (25).
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