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The bases of the unitary scheme model are used to calculate the two-particle
orbital fractional parentage coefficients. Tables of these coefficients are given
for nuclei with 4 = 3 and number of quanta of excitations 0 & N &< 10.

1. INTRODUCTION

The systematic construction of A-particle states in configuration space, when
the particles are in a common harmonic oscillator potential have been attempted by
many authors (Kramer and Moshinsky 1966, Pargmann and Moshinsky 1960). The
main concept involved in this construction was the realization that the most general
symmetry group for the inter-particie motions of this system was the unitary group
in 3(4 — 1) dimensions Uya-1). This realization is achieved in the so-called unitary
scheme model (Vanagas 1971), (USM).

The USM bases are classified by the irreducible representations (IR) of the
unitary unimodular subgroup of three dimensions SU; and its rotational subgroups
R; and R,. They are also characterized by the IR of the chain of groups
U41 D Oua D S4 where the latter groups are respectively the unitary, orthogonal
and symmetric groups,

The A-particle state in a harmonic oscillator potential could be decomposed
into a state of the first 4 — 2 particles and a state of the last pair of particles. The
expansion coefficients of this decomposition are called two-particle fractional
parentage coefficients (FPC). These coefficients are of great importance in the
calculation of matrix elements of two-particle operators such as the nucleon-nucleon
interactions. A

In the present paper the bases of the USM are constructed for nuclei with
A = 3 and number of quanta of excitations 0 < N < 10.

Furthermore, the two-particle orbital FPC are derived for the considered cases
and are tabulated at the end of this paper. :

Present qddress : Faculty of Education, King'Abdul Aziz University, Meccah, Saudi Arabia.



522 S. B. DOMA

2. CONSTRUCTION OF THE USM BaAsgs

The Hamiltonian operator which describes the inter-particle motions of a
nucleus in a common harmonic oscillator potential with respect to the nucleus centre
of mass is called the USM Hamiltonian and is defined as

Z [(p, — P + 3 Mot — ;j)z:]. (2.0)

i<j=1

Introducing Jacobi’s coordinates (Vanagas 1971) and the corresponding quasi-particle
masses and momenta it could be deduced that the Hamiltonian operator H is
equivalent to a scalar product of vectors in a 3(4 — 1)-dimensional space. This
product is invariant with respect to the transformations of the unitary group in
3(4 — 1)-dimensions Uy4-1)-

The Hamiltonian (2.1) has eigenvalues and corresponding eigenfunctions given
by Vanagas (1971)

Ey =[N+ 2 (4 = 1)] fio,
A-1

3
> Dk

k=1 =1
(22)

3

. . + —+ +
‘LQIII"”’“‘N‘N = Ca“l"'l aaziz e amNiN €xXp {.._

3%3

where Ex are the Jacobi coordinates, a;. are the creation operators to be associated

with these coordinates and with the corresponding momenta, and C is a normaliza-
tion constant. The functions (2.2) are used as bases for the IR of a symmetric
tensor of the rank N. The Young scheme {N} is useful for obtaining such IR. The
bases (2.2) are usually denoted by

| AT ) = | AN {g} () [f1 «LM ) .(2.3)
where

{p1> P25 g3}, for Uns;m 2> 3

{P} = {Pl’ Pz}§ P3 = 0: for Ug
{p1}; p2 = 05 = 0, for U,

with PL2ps 2320, and p=p, + pp + psg = N.
The bases (2.3) are classified according to the following orbital chain of groups :
SU; DR, DR,
Uga-y D % ...(2.4)
U1 D 044D S4
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The IR N, {p}, (v),[f], L, and M belong to the groups Uyu-1), Uss (and SU,
simultaneously), O4-1, S4, R; and R, respectively. In the relation (2.3), the quantum
number « is introduced to distinguish between the different states, that may arise
from the classifications, having the same IR. Direct methods for defining the IR
characterizing the chain of groups (2.4) are given by Vanagas (1971).

3. Two-ParTicLE OrBITAL FPC

The orbital function | AT ) assumes the following two-particle fractional
parentage decomposition :

[AP;:zur;A—zf;zruﬂA—21‘*‘>12n> G
IT,
where
T=N{ () OUIIM T = {3 G [fil Im, (N + e=N) ..32)
are the sets of all orbital quantum numbers characterizing the states of 4 — 2 and 2
particles, respectively, and ( AT | 4 — 2T; 2T, ) are the two-particle orbital FPC.

The bare in the above equations indicates that one quasi particle of coordinates

-> -5 l -
r

1 -~ .
o = \/—2 (raay — r4) = \72

has been separated from the orbital wave function of the A-particle state. The double

-
bares indicate that two quasi particles of coordinates £, and
A2
- A — 2 2 - - -
Es =\/—_—2A [A*—_zzn - (rA_1+rA)]
=1
have been separated.

From the transformation properties of the functions of eqn. (3.1) it follows that
the two-particle FPC assumes the following factorization (Doma and Machabeli 1975) :

(AT | A —2T; 20 ) = 2 (5} LA {e} Im | B{e} LM )
B
X (AN {} M) (18| 4 — 2N &} (2} () [F]; 2{¢} <o) [fa]
...(3.3)
where fis a repetition quantum number that may arise in the direct product

{8} X {& ~ {¢}, and ( {g} LM; {&} Im | B {p} LM ) is a Clebsh-Gordan coefficient
(CGC) of the group SU;. The CGC of the SU; group are factorized as follows :
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({BYLM; (e} Im | {g} LM ) = (LM, Im | LM) (g} L; {} I | {p} L)
..(3.9)

where (LM, Im | LM) is a CGC of the rotational group R, and ( {g} 7, {} /|| {¢} L )
is an isoscalar factor of the SU, group. Explicit algebraic expressions for the
isoscalar factors of the SU, group are given by Hecht (1965), losifescu and Stancu

(1967), Vergados (1968) and Alisauskas (1969).

Let us, for simplicity, recall the second term in the right-hand side of eqn. (3.3)
the two-particle orbital FPC. In terms of a new coefficient _{, introduced by
Vanagas (1971) the two-particle.orbital FPC can be calculated as follows :

(AN 11 4 = 2N @} {p} ) [} 2{e Ga) [fel )
MSD_ (Y, 75)
= z Aerer@n ot Vs
[/ He'Hpuad

x D). (@ { ({p} (exer) for2]) {0} | ({0} &) B} &) {0} )

X ((({e} &) {7} <o) {6} | ({p} (esea) {p12}) {6} ) (3.5

where

a=p—f,aq=p —pa=ppc=p—5

{912} == {9192} C {62} x {51}’ Jj= ‘% (91 - Pz), m = % (es — fa),

and m = } (e, — ¢,). The quantum numbers [f], {¢'}, {p1s} are IR of the groups
Sa-1, Ua_sz, SU,, respectively a is the determinant

a, a,

J(A)2(4 = 1) —d{d =2)2(4 = 1)

a =

a; a,

VA =224 < 1) J@rza =1

and

y _ [(G+m) G —m) G+ m!(f—mPr
Doy () = z iW(j—m — i)l (J+m—01(~m+ m)!

i

—i 4 {— * fm'—i
x @t gt g g ...(3.6)

1 273 4

are the matrix elements of the IR of the group SU,. The matrix QAT of eqn. (3.5)
is defined as (Vanagas 1971) : '
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~
N2 2] [
/1 \
oy N S — e
YD [f] Je—D2g Ag+1)% en
/1 Je+ )2z —AEg— 12

Here f ) f’, in the sense that the first different rows, having non-equal number of
squares, in the two IR [f] and [f’] have number of squares in [f] greater than the

corresponding in [f], and g is the axial distance for the IR [f’], given by Vanagas
(1971) :

g = g5 = AU — 207D + ACF), (3.8)

A
where  A(f]) = } z Flfs — 24 15 U] = Uy oo for ooy fal cte....(39)
i=1

The last two elements in the right-hand side of eqn. (3.5) are the recoupling-
matrix elements, the first of which is factorized in terms of products of 6j-symbols
of the SU, group, and the second is equivalent to a 9/-symbol of the SU, group.

Explicit algebraic expressions for these recoupling matrices are given by Alisauskas
(1972).

Finally a recurrence relations for the coefficients ./ and tables of the two-
particle arbital FPC, eqn. (3.5), for 3 4 < 6, and N < 3 are given by Vanagas
(1971). General and direct method for calculating the coefficients .4 and tables
of the two-particle orbital FPC for 4 = 6, and 2 N < 4 are given by Doma and
Machabeli (1975). This direct method was used to calculate the coefficients _] for
nuclei with 4 = 3 and 0 < N < 10. Then after the two-particle orbital FPC are
calculated for these nuclei. '

4. CONSTRUCTION OF THE TABLES

In order to construct the tables of the two-particle orbital FPC for a given mass
pumber 4 and number of quanta of excitations N one must find all the IR of the
following chain of groups :

Uga-1) D SU; 2 Uq1 D Ou1 D Sa B
U U u o u
Usg(a—2) DSU; 2 Uuzs D Uss D Ous D Sae e ~-(41)
B i i & ll
U, DSU,2U, D 0, DS, )
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The first row in this chain belongs to the set of A particles, after its centre of mass
has been separated, the second and the third rows belong to the set of A — 2, and
two particles, respectively.

The problem of finding the IR of the chain of groups (4.1) was solved
completely by Vanagas (1971). We are now interested in the case of 4 = 3 and
0 N 10. In such a case the IR characterizing the groups U, O,, S, in the
second chain of groups are simply : {0}, (0), and [1]. Hence in all the tables

[f] = [1], {p} = {0}, (v) = (0), and so they will be omitted from the tables.
From Pauli exclusion principle for the two-particle states ¢ must be even

number if [ fo] = [2] and odd number if [fs] = [11]. Also, since § + ¢ = N, 5 is
even number if N is even, [fs] = [2], or if N is odd, [fs] = [11], and 3 is odd number

if Nis even, [fa] = [11], or if N is odd, [fa] = [2]. Finally, since [f] = [fo]for 4 =3
the IR [f] will be omitted from the tables.

To be very clear we illustrate the following example :

Let us construct the tables of the two-particle orbital FPC for 4 = 3, N = 6,
and {p} = {51}. According to the chain of groups (4.1) one can obtain the following
two corressponding sets of IR :

B {e} (v ] o Ul 1 U

& 0 © [ O [y oy ]
@4 {0 O [ 2 211 21 2
8y O O [ (2) 211 [} [
2 0o O [ C) 211 21 12
i 0 O [0 4 211 [ ]

Hence the matrix of _{ will be of the form

N _

\Q)[f][f] Oy {1111 [11] @ 2112) @ 21011 @21302] @ [213{11]
N
=\

HDIOTIRN

{5}{03(0)
{4}{0}(0)
{3}{0}(0)
{2}{0}(0)
{1X{0}0)
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So that we have the following two matrices for the two-particle orbital FPC

{e} = {513, [fa] = [11]

N
N 0T O[] @1 @21
HIAN

{53
{3}
{1}

o} = {513, [fal = [2]

N
N\ (O [f] (2 [21] #H21)
&\

4}
{2}

5. RESULTS AND CONCLUSIONS

In Tables I-XI we present the two-particle orbital FPC for 4 = 3 and
0 < N < 10. These coefficients are orthogonal and normalized. The coefficients
corresponding to even N belong to even-parity states and that corresponding to odd
N belong to odd-parity states.

The functions resulting after the separation of the states of 4 — 2 particles, by

-> -
means of the two-particle orbital FPC, do not depend on the coordinates r4_y and rg4

- - -
but depend on the radius vector : r = rgq; — r4. It follows, then, that these func-

tions are useful in calculating the matrix elements of any kind of the two-particle
central operators :

V(| Pac — 74 | ) = V(r).

TaBrel : N=20
{o} = {0}, [fa] = [2]

N
N0 [f] 0) [3]
{5\

{0} 1
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TABLEII: N =1

o} = (1}, [fa] = [2] {o} = {13, [fa] =[11]
AN N
N W 1] (D [21] N\ W [f] M 21
{o} \ {8} \
N
) 1 {0} —1

TABLEIIl: N =2
o= 2L [/l =12

N
N\ W] (©) [3] @ [21]
AN

1 1
@ V2 V2
1 1
{p} = {2}, [fu] = [11] {of = {11}, [A] = [11]
AN AN
N M) [f] (2 [21] N M [f] O)* [111]
{} \\ {1 \
N
{1} 1 {1} 1
TABLEIV: N =3
{o} = {3}, (il = (2] {o} = {3}, [ful = [11]
AN AN
N\ W If] M =1 33 N O [f] (1 [21] @3y [111]
{} \ AN
/3 1 1 V3
&) >3 T @ -7 %
1 A3 : V3 1
{1} > -3 {0 2 -7
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TABLE 1V (contd.)

oy =021, =1

N
N O [f] (1) [21]
{8} \

{e} = {21}, [fa] = [11]

{1} —1

N
N\ ™ [f] (1) [21]
{8\
{2} -1

TABLEV : N =4
{o} = {4}, [fal = (2]

\{_P}\Q') {11 0 3] (2) [21] 4 [21]
N

@ ey

2} 2 0 4

o e ¥

{e} = {4}, [fal = [11]

N\
N M [/] () [21] (4) [21]
B\

) 73
1

m 3

ﬂﬁ[‘ El-j

{e} = 313, [fa] = [1]

N ,
NOWIT o O[] @121
{p}\\ .

{3}

{1}

o} = 31}, [fl =1[2]

AN
N WISl ) 21
{8} \
N
{2} —1
o} = {22}, [ fa] = [2]
N
N\ ) [f] ) 3]
&} \
{2} 1
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TABLEVI : N= 35
{o} = {5}, [fal = [2]
N
N O [f] (1) [21] (3) [3] (5) [21]
{5} \
4/ 10 25 1
& e s vy
2 /2 V10
B 7 - -7
A2 3 \/5
i 4 3 'y
{o} = {5}, [fa] = [11]
N
N 0[] () [21] (3) [111] ) 121]
{8} \
V2 3 V'S
2 V2 /10
2 e T -5
V10 /5 1
o -7 Y T

{o} = {41}, [fa] = [2]

<
W opl 0B
AN
1 V3
& -7 Tz
V3 1
t 7 7
e = 323, [ =12
<
\O U] () [21]
DN

AN
3} -1

{o} = {41}, [fo) = 11]

N
N\ My (3) (11
{5} \

{e} = 32}, (/o] = [11]

N
N\ [f] (1 21
(IAN

(2} 1
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TaBtg VII: N =6
{o} = {6}, [ful = [2]

<
NMUT @B @ [21] 4 [21] (6) 31
TN
N
/20 V30 V12 V2
{6} "5 R 8 3
4 V12 V2 V20 4/30
“ 8 S T
” V12 W2 /20 /30
2} g 5 5 5
V20 /30 V12 V2
{0} B R
o} = (6}, [fal = [11] ) = (51}, [/a] = [2]
< N
N O @RI @R (G111 N0 @RI @RI
&\ IR
\
V20 V32 V12 . 1 1
) T "8 s 0@ RV v,
/24 /40 1 1
{3 Yo 0 -5 2 v 72
/20 /32 /12
t T R
) = 51}, [fa = [11] {6} = 42, [fd = 2]
< <
NO1 O @RI @Ry NWIT @B @R
{5\ {8\
\
V3 2 1 1 1
o v R v Tt v B Vi T
V2 V6 1 1
{3} m 0 2———\/2 {2} \/_2 7§
V3 —2 —1
. v, R v BV,
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TABLE VII (contd.)

fey = {42}, [f] = [i1] {o} = {33} /o] = [11]
N N
N [f] (2) [21] N ) [f] O)* 111}
{6} \ B\
N
{3} —1 {3} 1

Taprg VIII: N =17
{p} = {7}, [fal = [2]

\{p\}{) 1 M2l 3B (5) [21] M 121]
5} Vi3 L s
3 3 B 'k e

{o} = {7}, [fal = [11]

<

{_@}{v) U men g (5) [21] (M [21]
N

W -3 _«/_812 _ \_g_s \_(s_s

) AL L sy




ORBITAL FRACTIONAL PARENTAGE COEFFICIENTS FOR NUCLEI WITH 4 = 3

TABLE VIII (contd)
{pt = {61}, [fu] = [2]

<
DOV mpn 3 [21] (5 [21]
[
2
o g 2 oy
2 V2 A/10
3 7 s e
V10 V5 1
1} aire I -
fo} = {613, [£] = [11]
<
INQIZINOLS (3 [111] ) 121]
AN
10 5
{6} -0 = T
2 2
@ R
2 3 5
& - & &

{o} = {52}, [/a] = [2]

<

\OU ORy OB
AN

3 1

) -2 -7

3

o - 2

{e} = {43}, [fel = [2]

{o} = {52}, [fu] = [11]

N
N\ /1. (m21]
7\

{3} I

AN
N\ W [f] () [21] (3) 111}
AN
1 V3
“ 2 a
V3 1
& 7 7
{e} = {43}, [fa] = [11]
N\
N\ (M [S] (H 21
{3 \
{4} 1
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TABLEIX: N=28
{o} = {8}, [fo]l = [2]

<
{_\} \(v) 71 OpE @RI @RI OB ®R21
[3
8 V10 112 \/56 4 V2
} 6 6 6 16 T3
6 V40 4 V32 W2 /56
6 % ~ 16 ~ 16 16
6 +/80 4/140
“ T ° ~T% ° 1w
{‘2 V40 4 V32 V112 4/56
} 16 16 716 16 16
o Y0 _ w12y 4 2
16 16 16 16 16
(o} = {8}, [fa] =111
N
{_\\ {v) /1 ()21] @ 21 (6) [111] ®) [21]
2 N
/56 V112 V72 4
7 6 T 6 6
) VT2 4 /56 V112
16 1% Ti6 ~ 16
3 VT2 4 /56 V112
} 6 6 - 16 16
e /56 112 V72 4
} 6 16 6 ~ s
{6} = (71}, [fe] = [2]
N
{ } {v) Lf1 @ 2] 4 [21] (6) [3)
[3
N
\/20 V32 V12
) 8 8 Ty
2 _4/20 V32 V12
} 5 5 -5
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TABLE IX (contd.)
fo} = {71}, [fa] = [11]

N
NG ©O*[111] (2)[21] (4 [21] (6) [111]
AN

535

v/ 20 V30 V12 V2
7 K2 B 78 3
V12 V2 V20 /30
) En T 8 T8
V12 V2 v 20 v/30
3 R EE B
. V20 /30 av V2
U3 I ~§ T8
o} = {62}, [Ja] = [2]
<
NG @ (21] ) [21]
3
\
V3 -2 -1
© 22 272 2v2
V2 /6
“ 2v2 ° 22
V'3 2 -1
2 22 V2 V2
) = (62}, [fa] = [11] o} = 53}, 1fil = 2]
X <
O @r1 @R N\ ) [/] @ 1]
LI (AN
-1 1 4 1
1 1
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TABLE IX (contd.)

{e} = {33}, [/fu]l = [11] {e} = {44}, [f] = '[2]
N N
NOUT OF (1] @ [21] N O [f] (0) 3]
&\ TN
1 1 {4} — 1
{5} 72 v
1 1

TABLEX: N=9
{o} = {9}, (Sl =2}

N
{_} {;) [f] (1) [21] 3)13] 5 21] M 21 93]
[4
V126 /84 6 3 1
B} 16 16 16 16 16
/56 8 10 6
{7} 16 0 ~ 15 % 16
5 6 /24 /56 V14 V126
16 16 - 716 16 16
V24 8 V84 A/84
3 6 -1 0 % ~ I
0 V14 /84 10 7 3
} 6 TS 6 16 6

e} = {9}, [fdl =1[11]

< ,
@@U]Amm] @) 111 ©) 121] (7 [21] @ [111]
[3

N
V14 4/ 84 10 7 3
8 ~ 6 6 6 ~ 16 3
/24 ’ 8 +/84 /84

{6} ~T5 16 0 T T 16
4 6 A/24 /56 V14 /126
4 ~ 16 6 ~ 16 6 16—

4/56 8 10 6

2 T 0 16 5 T

/126 84 6 3 1
{0} BT T % 6 6
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TABLE X (contd.)
{e} = {81}, [/l =[2]

S
SOV oy eB ©R OR
e
N
V5 V27 5 V7
& -% T8 7% ~F
3 V15 V5 V35
) i S E3 5
V15 1 V27 V21
& 5 “¥ 5 5
35 /21 V7 1
ty - 3 3
) = 81, [£] =[]
<
INUGENUIE GG RO L BN
AN
/35 4/21 /7 1
& B B T T
V15 1 V27 V2L
{6} 5 S S
3 /15 45 4/35
X i S ~% 8§
V5 /27 5 V7
@ o . o K3
o) = (72 (£ = [
<
NI (3) [3] ) [21]
e
\
A/10 NE 1
o B 7 %
2 42 /10
) T T KN
2 3 \/5
& 3 T 3
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TABLE X (contd.)
{o} = {72}, [fa] = [11]

<
N0 Ry 3 (1] ) [21]
TN
N
2 3 5
9 e T -
2 2 10
4} ry % l/z“’
1
2 e - -7
o} = {63}, [ful = 2]
<
N0 /] (1) [21] 3 Bl
AN
] V3
) 7 7
/3 1
& % 7
o} = (63}, Lfad = [11]
<
N0 ] () [21] @) [111]
AN
N
V3 1
© = 7
1 v
& T 7
o} = (54}, [£a] = [2] o} = {54}, 1fal = [11)
< <
N0 /] (1) [21] N1 (1) 211
AN AN
N N

{5} 1 {4} -1
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TasLE XI :

N=10

{o} = {10}, [} =[]

539

N
{_}{') /] 0) [3] (2) [21] 4)[21] (6) [3] ®) 21 (10) [21]
[3
0 V252 A/420 +/240 /90 V20 V2
{10} 32 3 33 37 35 E)
g /140 VB4 /48 \/338 /324 /90
8 33 37 3 T m T3 ~ 3
] +/120 V8 \/224 /84 \/168 A/420
{6} 32 3 T 3 ~ 33 32 33
s A/120 \/8 /224 /84 \/168 A/420
@ 37 T30 T3 32 32 T 32
) V140 V84 /48 V338 V324 /90
2 32 T3 T3 32 T3 32
o V252 /420 /240 /90 V20 V2
{0} 3 T 3 37 -3 33 ~ 33
{o} = {10}, [fa] = [11]
AN
{”}Q) [/ (2)[21] 421 (6) [111] (8)[21] (10) [21]
e
N
9 NZY) /96 9 V32 5
9} 16 716 16 16 16
; /56 V32 V12 /96 /60
{7} T6 16 6 ~ 16 T3
1/60 4/ 70 V126
{5} To 0 - T6 0 ~ 16
; /56 V32 V12 /96 A/60
{3 To T6 -6 T6 To
{1} V42 /96 9 V32 V5
16 16 16 BT BT
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TaBLE XI (contd.)
{} = {91}, [ful = [2]

<
N0 @Rl

@ [21] 6) 3] ® [21]

{8\
V/56 V112 V712
{8} “T6 T 16 " 16 16
6 V72 4 V56 V112
{6} ~ 6 AT 16 16~
{4} _:\_/Z__Z i l/_& —_— __\/”2
16 6 3 16
/56 A/112 V712 4
{2} ~T16 6 T 6 16
{py = {91}, [fl = [11]
AN

{%Q) [f1 ©O*[t} @21 @GRy ([ (821

[%

9 /70 V112 V56 4 V2
2 16 6 ~ 16 T
{7} /40 4 V32 V112 /56

16 16 16 16 16
6 \/80 V140

&3 16 0 16 0 16
3 A/40 4 V32 V12 /56
16 16 16 16 16
a0 A/70 V112 V56 4 V2
16 16 16 16 16

{e} = {82}, [/u] = [2]

N
\NMWI/T 03]
ETAN

) [21] (4) [21] ® 3]

{8}
{6}
4
2

4/ 20

45

\/30
- =
V2
T8
V2
8

V30
8

viz o _v2
8 8
V20 V30
8 8

v w30
8 8
V12 V2
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TaBLE X1 (contd.)

{o} = {82}, [fo] = [11]
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