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The stress field in the vicinity of a system of m Griffith cracks located at the
interface of two bonded dissimilar elastic half-planes is determined. Following
a procedure of Lowengrub and Sneddon, the problem has been reduced to a
system of simultaneous integral equations which are equivalent to Riemann
boundary value problem with closed form solution. The problem, when
number of cracks is three, is treated in detail.

INTRODUCTION

Lowengrub and Sneddon (1973) have considered the problem of determining
the stress field due to the presence of a Griffith crack located at the interface of two
bonded dissimilar elastic half-planes. They assume that the deformation of the
composite solid is due to the application of a prescribed pressure to the upper and
lower surfaces of the crack. The representation of the displacement in terms of
Fourier transform reduces the problem to that of solving a set of simultaneous dual
integral equations which are shown to be equivalent to Riemann boundary value
problem which has a closed form solution. Lowengrub (1975) used this technique
to determine the stress field due to the presence of two coplanar cracks located at
the interface of two bonded dissimilar half-planes. In this case the problem reduces
to the solution of a system of simultaneous triple integral equations, Lowengrub
mentions in his paper that the technique can be extended to any number of equally
spaced cracks. However, from his paper, it appears that the number of cracks should
be even in number. He has not given the details of the general problem and has
not shown how the particular cases of single and double cracks may be deduced.

In view of the growing importance of the problems of dissimilar elastic solids
containing cracks at the interface, it will be useful to give details of the problem of m
cracks. Using Fourier transform the problem reduces to the following set of
simultaneous equations:

F. [ap(8) + BU(E); x] = fi(x), x € L, (LD
F; [Bo(8) + «d(®); x] = fu(x), x € L, (1.2)
Folo); x] =0,x€ L, _ ~» ..(1.3)

Fol{E); x] =0,x € L. f ..(1.4)
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Here, F;, F, represent Fourier cosine and sine transforms respectively;
L1 = U;;l (a,, bj),L'l = R — Ll,
R’ is the positive real axis; 0 € a; < b, < a, < b, .. an < ba.

We shall begin by solving this set of integral equations in section 2. This
system of integral equations shall be reduced to Riemann boundary value problem
which is known to have closed form solution. This solution will be used to study
the distribution of stress due to the presence of m cracks located at the interface of
two bonded dissimilar half-planes. It is assumed that the cracks are symmetrically
situated with respect to y-axis taken perpendicular to the interface. The cracks are
defined by the relation y = 0,4 | x| < bs, j=1,2,3 ... n. The number of
cracks shall be odd or even according as a, = 0 or @, # 0. The cases of single
or double cracks, which have been treated by Lowengrub and Sneddon (1973) and
Lowengrub (1975), can be derived from the general case treated here by takingn = 1,
a, =0 and n=1, a, =0 respectively. These results are given in section 4.
Lowengrub (1975) has mentioned that the constant d, has to be calculated numeri-
cally. It is interesting to note that this constant can be obtained in closed form.
The section 5 contains a detailed study of the case when the number of cracks at the
interface is three. When a constant pressure p, is applied at the faces of the cracks,
the normal stress component across the interface is given by

Poll — {(x* — @®) (x* — b°) (%% — ¢)}712 (x® + d x) cos wb
+2{a+b—c)xt—d})sinwbd], x>c

where 8 = log {(x -- a) (x — b) (x + ¢)/(x — @) (x + b) (x — ¢)}. Hered,, d are

arbitrary real constants which can be expressed in closed form in terms of generalized
hypergeometric function

Fp [a;; by, by, ..., bu; €5 Xy, X5y ...y Xn)]-
We assume that stress components satisfy the conditions

Gw(x; 0) = O(X_l): Gay(X, 0) = O(x_l) as X ~>» oo,

2. SOLUTION OF THE INTEGRAL EQUATIONS
We begin by solving the system of integral eqns. (1.1) - (1.4). Let

F [9(8); x] = n(x), x € L, l

=0 ,x€L J ..(2.1)
Fi[{(&); x] = sy(x), x € L, l
= 0 , X € Ll]‘ J ...(2.2)
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As in Lowengrub and Sneddon (1973), it can be easily shown that

Fulot@): 1 = o | 2 (23)
L
Fpe A = - [ 2 e

L

where r(u) and s{u) are even and odd extensions of ry(u), s,(u) respectively to the
interval L,, where

Ly=U (— by, —a), L=L UL,

With the help of these equations the system of integral eqns. (1.1) ~ (1.4) reduce to
the following singular integral equations

ar(x) + (Bn) j = fix), xe L (2.5

r(u)

u —

as(x) — (B/x) du = fz(X) x €L ...(2.6)

Pty t~

where fl(x) and fz( x) are respectively the even and odd extensions of fi(x) and fy(x)
to L,. If we write

Mx) = s(x) — ir(x) ..(2.7)
then the above two equations kcan be written as a singfe equation |
faA(x) + (B/) j 2 = f, x € L (28)
L

where f(x) = fl(,\) + tf(x) If we write
1 Mu)
AG) = 5 s 2 gy A29)
L

and on using Pelmelj formula (Muskhelishvili 1963)

A*(x) — A-(x) = A®), AF (%) + A (x) = 'ji“‘—’du .(2.10)

) u—x
L

the integral eqn. (2.8) reduces to the following Riemann boundary value problem

At(x) = — kA~(x) — il + B)* f(x), xE L ..(2.11)
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where k = (8 — «)/(8 + «). The solution of this problem, as given in Muskhelishvili
- (1963), is

AZ) =

X(2) I JOd L poy () (2.12)

2@ + ) | X —2)
L
where P(z) = djz"! + dyzv% 4 ... 4 da,d,, d,, ..., dn are arbitrary complex constants
and X(z) is the solution of homogeneous Riemann boundary value problem
XH(t) =—kX-(t), t € L.
The solution of this problem is (Muskhelishvili 1963)

X(@2) = 1 [(z — @) (z + b 2= 2 [(z + ay) (z — by)] 1212, g, 5£ 0

[ Jtn P

— (Z + b ) (1-2iw)/2 (Z — b) (1+2ia)/2 [I [(Z — a,) (Z + b,)]—(l—..u)/z
]_

X [(z 4+ as) (z — b|t1t2ieiz g =0 (2.13)

where » = (2r)"1 log k. In case f(x) is a polynomial

| s = L U@ @) — L) (2.14)
L
where
1 T f(Rew) Ret
. el el
L(z) = Rhlan; X X(Re) (Re® — 7) ds. ..(2.15)
0
Hence from (2.12) we have
A(2) = i2B)1 [ f(2) — L(z) X(2) + P(z) X(2)}. ...(2.16)

3. A SyYSTEM OF GRIFFITH CRACKS AT THE INTERFACE OF TWO BONDED DISSIMILAR
ELASTIC HALF-PLANES

In this section, we shall apply the solution of the last section for studying the
distribution of stresses in the vicinity of m Griffith cracks located at the interface of
two half-planes. The cracks are located symmetrically with respect to y-axis which
is taken perpendicular to the interface. The two half-planes y > 0 and y < 0 are
occupied by elastic materials having elastic constants ug, &y and p,, k, respectively.
Here p; denote the modulus of rigidity and ki = 3 — 4w, i = 1,2, where u; is
Poisson’s ratio. The cracks locationis givenbyy=0,a; < | x| < b, j = 1,2,3,.

The lower and upper surfaces of the cracks are subjected to a prescribed pressure p(x)
Inside the cracks we have the conditions



SYSTEM OF GRIFFITH CRACKS 637
ovy(%, 0) = on(x,0—) = —p(x), x €L (3.1
eay(%, 0+) = om(x,0—-) = 0, x € L. ...(3.2)
On the region outside the cracks at the interface we have the continuity conditions
U(x, 0+) = U(x,0-), V(x,0+) = V(x,0—), x& L’ .33
ovu(X, 04+) = ouu(x, 0—), oz(x, 0+) = oz(x,0-), x&€ L. ..(3.49)

In order to simplify the calculation, we suppose that p(x) is an even function of x.
The solution of displacement equations can be written as

(Rl =k (4~ BB e 5> 2,y > 0
Ux, ») = < ...(3.5)
'LFS [ {4, + k; (4, + B Ev} e®, E—>x], 3 <O
(Fle (B — b (4 — BY G} e 82, y > 0
Vix, y) = < ...(3.6)
!LFc [671 {B, — k;' (4 + Bp) &y} €%¥; E— x], ¥y <O.

Following Lowengrub and Sneddon (1973), it can be shown that the conditions
(3.1) - (3.4) lead to the system of integral eqns. (1.1) — (1.4), where
kyky +~T) (1 + k) 4, = [KT + § (kiky + D] 9(8) — 3 (kyky — 1) $(3)
kike + T) (1 + k) By = — 3 (kiky — 1) @(€) + [T + 4 (kko + DIYE)

F=;’:1"°‘=(k1—‘)1‘—(k2—1),B=(k,+1)r‘+(k2+1),

2

kiky +— T) (1 + k1) p(x)

)= (3.7)
1
With the help of (2.1) - (2.4) it can be easily shown that
— Y o B )
(¥ 0+) = owlx, 0-) = — T N T T TD)
s(u) ,
X I T3 x€L .-(3.8)
L
Ges(¥, 0+) = om(x, 0—) = By
’ ks + D) T+ kD=
r(u) ,
X s l‘%;du, x€ L (3.9)

L
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Also, as in Lowengrub (1975), the continuity conditions (3.3) are satisfied if
F.[E%9(E); x] =0, F.[E'W(E);x] =0, x€&€ L,

Substituting the values of @() and (&) from (2.1) and (2.2) in the above equations
and after interchanging the order of integration we get

b; b;
fs(wydu =0, [ ri(wydu=0, j=1,2,3,..,n
a; aj

Hence from (2.7) we have
b;
fAMDdu=0, j=1,2,..,n ...(3.10)
aj

The constants d,, d,, ..., du of the polynomial P(z) in (2.12) can be determined with
the help of the conditions (3.10).

4. PARTICULAR CASES

The problems of single and double cracks has been studied by Lowengrub and
Sneddon (1973) and Lowengrub (1975). These results can be obtained as particular
cases of the general problem studied in the previous section.

(a) Single Crack at the Interface Opened by Constant Pressure

In this case the crack is defined by y = 0, — I € x | and L, is the interval
(0, 1). If the crack is opened by constant pressure p(x) = p,, then from (1.1) - (1.4)
we have

Fo fag(®) + B9 x] = £, 0K x< (@)
Fy [B6(€) + «d(€);x] =0, 0< x< 1 ..(4.2)
F.lp((); x] =0, x> 1 ...(4.3)
Fl4E);x] =0 x> 1. (4.48)

From the results derived in section 2, we have
X(2) = (z + DO-2ie)2 (z — 1)-(1+2e) 2, P(2) = d, ]
L) = fyz — 20, AG) = Q1 — 2 + D) X@] b .45)
Jo = kiky + T) (1 + ki) ol Jl

Hence

r(x) = —fo(f2 — a2)"12 (1 — x?) 12 (xsin wh — wcoswl), 0L x 1
' ...(4.6)

S(x) = —fo(B2 — a®) 12 (1 — xB) 12 (xcos b + wsinwl), 0L x <1
...(4.7)
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and for x > 1 the stress components are

ouu(X, 0+) = py [(x2 — 1)"V/2 (x cos wb + w sin wf) — 1] ...(4.8)
ozy(%, 0-+) = po (x2 — 1)71/2 (x sin wb — w cOS wb) ...(4.9)
where 0 = log {(x + DH/(x — D}

(b) Two Collinear Griffith Cracks at the Interface

In the case of two collinear Griffith cracks at the interface, L, = (a, b) and the
cracks are defined by y = 0, a<< | x| < b, a %4 0. If the cracks are opened by
applying constant pressure p, at the inner faces of the cracks, then the system of
integral eqns. (1.1) to (1.4) reduces to the following set of simultaneous triple
integral equations

Felp); x]=0,0< x| <a,|x|>b ...(4.10)
Fo[9);x]=00<ix|<a|x]|>b ...(4.11)
F. [ap(8) + 84(E); x] = fo, a < [ x| < b ..(4.12)
Fo[Be(®) + ad(®); x] = 0, a< | X [ < b ..(4.13)

From the results derived in section 2, we have
X(z) = (z—a) (z + b)]—u—zi.)/z [(z + a) - b)]—(1+2iu)/2 ]
P(z) = diz + dy, L(2) = foz2 + bz -+ hy)

I} .(4.14)
A@Z) = ifo(28)7F [1 — (22 + diz + dy) X(2)] {
fo=ky (ky + T) (1 + kiT) po/pa- J
Hence
r(x) = fo(B2 — a®)712 {(x2 — a°) (b® — X} [(x? + d,) sin wb
— 20(b —a)coswb], a<<x<b ..(4.15)
S(X) = — fo( — a2 {(x* — a®)(b* — )R {(x* + d) cos b
4+ 2w(b — a)sin wb], a<x<b ...(4.16)

where h,, h, are known constants and 8 = log {(x + b) (x — @)/(b — x) (x -+ a)}.
If we write d, = d, +id], d, = d, + id},, then it can be that

dy =d; =0, d] = — 2u(b ~ a).
The constant d, can be obtained from the condition (3.10). This condition leads to

, A
2 +d,) cos b + 2w(b — a) sin wh] (b2 — x2) (2 — @)} dx = 0.
‘ .(8.17)
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This equation gives d, = — [I, + 2w(b — a) L})/],
b
where Iy = J[(5% — x2) (x* — a¥)]1/2 cos b dx,
a
b a
I = [[(b* — x?) (x2 — a®)[ /2 x sin b dx
a
b
I = [ [(b® — x?) (x* — a*)]*/2 x% cos wb dx.
[/

Lowengrub (1975) has mentioned that the constants d, has to be calculated

numerically. It is interesting to note that the above integrals can be evaluated in
closed form. Hence the value of the constant d, can be obtained in a closed form.

These integrals are evaluated in the Appendix.

S. THREE COLLINEAR CRACKS OPENED BY CONSTANT PRESSURE
In this section, we shall consider the case when three cracks are located at the
interface. The prescribed pressure p(x) = p,, where p, is a constant. The three
cracks are defined by y =0, —c < x < —b, —a < x <a, b<x<c, where
a, b, ¢ are positive constants satisfying the condition a << b < ¢. For this problem
from the results derived in section 2, we have

X(2) = {(z* — @) (22 — b*) (&% — A7

{(z+a)(z—b) (z + c)}"“
(z—a)(@z+ b)(z —¢)

P(2) = d,z% -+ dyz + dy, L(2) = fo(2® + hz% + hyz + hy)

]
:> (5.1)
!
J

where A, h,, h, are known constant and f, = ky(k, + ) (1 + &,0) po/p,.
Hence from (2.16) we have
A(2) = fL2RY 1 [1 — (28 + diz? + doz + dy) X(2)] -.(52)
merging the known constants h,, &,, h; into arbitrary constants d,, d,, d,.
Using (2.13), following values of X*(x) and X—(x) are obtained:
(i) forb<x<c
X*(x) = —kX~(x) = —ik/? (cos wb; + isin f,)
X {(x* — a?) (x* — b%) (c® — x¥)}1/2 ...(5.3)
(i) for0<x<a
XH(x) = —kX~(x) = ik'72 (cos wb; + i sin wb,)
X {(a® — x?) (b® — x?) (c® — x?%)}1/% ...(5.4)
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(iii) fora<x <b
Xt(x) = X~(x) = — (cos wb, + isin «b,)
x {(x2 — a®) (b® — x) (c® — x?)}12 ..(5.5)
(iv) forx > ¢
X*(x) = X~(x) = (cos wb, + i sin wb,)
X {(x* — a¥) (x* — b?) (x2 — )} -..(5.6)
where b, =log{x+a®—x(c+x))(x—a)®+ x)(c — x)}

B, = log {(x + @) (x — ) (x + O(x — a) (x + b)(x — c)}.
Hence

A(x) = AF(x) — A (x) = ify(2B)* (x® + dyx® + dpx + dg) [X~(x) — XH(x)).
(5.7)

Let us write d; = d; -+ id:_, j=1,2,3, where d; and d; are real constants. From
the above equations and (2.7), (2.11) it can be easily demonstrated that
@ forb<x<ec
S(x) = ~— fo(B2 — a?)"12 {(x2 — a?) (x® — b?) (c* — x%)}1f2
X [(x® 4+ d) x2 4 dyx + djjcos why — (A7 x? + dyx + dy)sinwy]

...(5.8)
FX) = foB — o) 1/2 {(x? — a?) (x? — B?) (c* — x%)}iee

X [(x2+d x? + dyx + d}) sin o) + (d; x* + dyx + d3) cos b))
...(59)
@iy for0<x<a
8(x) = fo(B? — a2) 12 {(a® — x2) (b — x?) (¢ — x2)j1/2
X [(x® + d x* 4+ dy,x + d,) cos wby — (d] X% + d; x + d) sin why]
' ...(5.10)
rx) = — fo(B* — ¥ {(a* — x*) (B® — x?) (c* — x*)jHR
X [(x® + d x* + d,x + d;) sin wb, + (d]x* + djx + d;) cos wl,].
...(5.11)
Since s(x) and r(x) are odd and even functions of x, hence we must have

d, =d, =d =0

From (2.10), (2.7) and (5.2) for a < x < b, x > ¢ we have
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N AL 1 Alw) . L s(u) — ir(u)
L
= (281 [1 — (% + dix* + dyx + d3) X*(x)). ...(5.12)
From (5.5), (5.6), (5.12), (3.8) and (3.9) we have, fora < x < b
onu(x, 04) = ou(x, 0—) = py [1 + {(x* — a®) (b* — x?) (¢ — x*)}7 /2
X {(x% + d; x) cos wb; — (d] x* + d}) sin wh}] .(5.13)

oru(x, 0+) = ouy(x, 0—) = py {(x* — a?) (b* — x*) (¢® — x%)}71/2
X [(x? -+ dyx) sin why + (d] x* -+ d}) cos wh,]. ..(5.14)

Similarly for x > ¢, we have

ouu(X, 0+) = on(x, 0—) = po [I — {(x* — @®) (x* — b%) (x* — )71

X {(x® + d,x) cos wby — (d] x* + d;) sin wb,}] ...(5.15)
or(X, 0+) = oan(x, 0—) = — po {(x* — &) (x* — b)) (x* — )72
% [(x3 + d}, x) sin wB, + (d; x* + d) cos b,]. ...{5.16)

The above expressions for stress components show that at the edges of the cracks at
x = a, x = b, x = ¢ violent oscillations occur., From these equations, for large
values of ‘x’, we have

ouy(x, 04) = O (x72), oav(x, 0+) = py {2wl(a + ¢ — b) + d} x* 4 O(x7?).
Since the stress components for Jarge ‘x” are of the order O (x~1) we must have
d] = —2w(a + ¢ — b).

The remaining constants @, and 4; can be obtained from conditions (3.10). From

this condition we have

(o4
E (x3 + idy 2% - dyx - id3) (cos wb 4+ i sin wh) dx —

[0 = @ (F = %) (T = AP ¢ D
or,
[b(b + c) id] + bdy + b(b + c) + id] J, + [(b + ¢) id] + d,
+ b be+ )y —(c+ 20+ id)Jy —J, =0 .(5.18)
where

J, = _E F(x)dx, J, = bf (x —b) F(x) dx, J; = Z (x — b)(c — x) F(x)dx
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J, = ljf (x — b)? (¢ — x) F(x) dx

2 2 + @) (x 4+ ¢)(x — b))~
F(x) = (x* — a®)(x® — b?)(c? — x?) 102 (x } .
( S S R (o ey sy vy
The integrals J,, J,, J;, J, have been evaluated in the appendix. On separating the
real and imaginary parts the values of unknown constants d, and d, can be obtained.

Calculations have been made for a particular case when a = 0.2, b = 0.6, ¢ = 1.0,
n = 022, 0, =035, E; = 107 psi, E, = 4.5 x 105 psi. For these values we have
d, = 0.1136, d; = 0.0009. '
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APPENDIX

We shall now evaluate the integrals I, I;, I, which occur in section 4. These
integrals are obtained by separating the real and imaginary parts of the following
integrals which have been evaluated by making the substitution x = a cos26 + b sin?6
and by using the binomial expansion:

b b
fromimt o osn o genon
a

X (b — x)-(tzie)iz (b L x)-(1+2ia)iz g

T

= ————— L 1 L fp X . L ‘e 1 —
@ T b) cosh wn F [} + iw, % iw, § lw, 3 + iw; 1, z, z]

...(A})

b
X {(x* — a°) (b — x®)}~172 x exp (iwb) dx
a

=z} ~ iw) TG + iw) F3 [} + iw, 3 — iv, } — iw, § + iw; 2;2, — 2}
a
a-+ b

T3 —iw)Tii+iw) F[3+io, —iw, 3 —in, }+ie; 1; 2, —2]
...(A2)

-4
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b
I {(x2 — a?) (b2 — x)}1/2 x2 exp (iwb) dx
a
_ na?
" (a 4+ b) cosh nw
+ (b—a) TG —iw) TG +iw) Fy [} + v, }—iw, } —iw; $-+iw; 2; 2, —2)

b—a)z
T b

§ + iw: 352, —2) -(A3)

Fs[%—{-lw,%——lw,%}-—iw,%—l—iw,l;z,——z]

TG + i) TE — o) F5[} + fo, } — o, § — iw;

where z = (b — a)/(b + a) and F; is hypergeometric function of two variables

defined in Gradshteyn and Ryzhik (1965, p.1053). On separating real and imaginary
parts, we get

= (a + byl m sech nw ,F, [} + iw, } — iw; 1; 2% ...(Ad)

I, = nwz sech meo Fy [} + iw, 3 — o, } —iw, } + iw; 2; 2, — 2] ...(A5)

I, = na¥(a + by sech new F3 [} + jw, } — i, } — fow, 3 -+ le0; 1, 2, — 2]

+%(b—a)sechmuF3[§+im,§—iw,%—iw,§+iw;2;z,-—z]

— % z(b — a) sech nw

i i (4 -+ i)y (b — wls (3 — i)e (& + i)e (2 + D(g— p)
=& (p)! (Q)!(3)p+a

X 29— z)% v ...{A6)

It may be noted that the above series are rapidly convergent. For any numerical
computation of the integrals it is sufficient to consider only a first few terms of above
series.

The integrals occurring in section 5 can be evaluated by substituting
x == bcos?0 + csin? 6,
Binomial expansion of the integrand in powes of sin § and cos § give

Jo = KFp [} — i, } — iw, } + iw, } + iw, } — iw} 1, 2, 25, 2, z,]
( (AT

J, = K(c — b)(} + iw) Fp [} — iw, } — iw, } + iw, } + fw,
} —iw; 2; z,, 24, 23, 2,] ...(A8)
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Jy=3c -0} + K[} —iw, } — iw, } + iw, } + io,
1 — iw; 3; 7;, 2,, Z, 2,] ...(A9)
Jo=(—0P G+ )@ + iw)KF, [§ — iw, } — iv, } + iw, § + io,
3 — iw; 4; 2y, 2,, 23, 2,] ...{(A10)
where

Fpla; by, by, ..., basc; 2y, 24, ... 2n]
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2 = (¢ — Bf(e + @), 73 = (c — B)f(c — a), 7, = (¢ — Bf(c + b),
zy = (¢ — b)/2¢,
K = (rn/cosh nw) {2c(c + b) (¢® — a?)} 12 {2¢(c + a@)i(c + b) (¢ — a)}yi.

The function Fp can be approximated by the first few terms since z, z,, z,, 2, are less
than unity and hence the series is rapidly convergent.



