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This paper investigates Ricci collineations admitted by the electromagnetic fluid
space-times with respect to the vorticity vector, electric field vector and
magnetic field vector respectively. Further, this paper demonstrates a few
examples of conformal motions which degenerate into motions in the space-time
of electromagnetic fluids.

1. INTRODUCTION

Glass (1975) has investigated an interesting conservation expression which is
generalized by Oliver and Davis (1976) employing symmetry methods in the domain
of shear-free perfect fluids. An elegant account of groups of motions and Ricci colli-
neations in the space-time filled with perfect magnetofiuids is due to Shaha (1974)
who has developed a definite magnetofluid scheme characterized by a stress-energy-
momentum tensor with time like eigenvalue as the energy density and the three
space-like eigenvalues as the partial pressures. For such scheme he has obtained a.
set of necessary and sufficient conditions for the Ricci collineations with respect to
the world line to imply the motion. Asgekar and Date (1977) have investigated the
Ricci collineations and conformal motions with respect to the flow vector in the space-
time filled with imperfect magnetofluids. The author (Prasad 1978a-c, Prasad and
Sinha 1978) has studied the family of contracted Ricci collineations admitted by the
magnetofluid space-times and investigated Ricci collineations admitted by the electro-
magnetic fluid space-times with respect to the fluid flow vector.

The purpose of this paper is to explore certain theorems in the area of local
conservation laws involving symmetry methods developed by Oliver and Davis (1976),
Davis (1974) and Davis ef al. (1976). In particular, we look at the symmetry pro-
perties in terms of .EL Ri; = 0 for space-like symmetry vectors £i and investigate some

of the conditions that the Ricci collineations (RC) impose on the electromagnetic
fluids.

2. FIELD EQUATIONS AND KINEMATICAL PARAMETERS
The Maxwell field equations read as
(@B — wWB + yiituser).s = 0 ~..(2.1)
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and
WDi — D' + wivupy); = — J¢ ...(2.2)
where B¢ is the magnetic induction vector, D¢ the electric induction vector, J* the
electric current vector, e* the electric field vector and A the magnetic field vector,
Einstein field equations are
Ri; — Y Rgiy=— T ...(2.3)

where the stress-energy-momentum tensor 7;; for a self-gravitating, thermally
conducting, viscous, compressible and charged fluid with constant magnetic permea-

bility and electric permittivity is given by

Tis = (p* + p*) uius — p*gi + vous

— (Aeies + phihs) + Pats + Psu; . (2.4)

where
p*=p+3Ajel>+plhl? ..(2.5)
pr=p+3rlelt 4 ulhj? ...(2.6)
Pi=gqi— Vi 2.7

Here ¢ is the matter energy density of the fluid, p the isotropic pressure, v(>> 0) the
coefficient of viscosity, g the heat energy-flux vector and V¢ the electromagnetic
energy-flux vector.

The kinematical properties of the fluid streamlines are characterized by the
usual decomposition for the rate of change of the flow vector u? (Ehlers 1961).

Uis = G5 + wis + Oy + Dusuy -..(2.8)

where a5, wis, 8 denote shear, rotation and expansion of the congruence of stream
lines respectively. D stands for the directional derivative along the fluid flow.

The covariant derivative of the 4-vector »‘ tangential to the space-like
congruence is decomposed according to Greenberg (1970) as follows:

Ri;3 = Gii -+ wij + 0;,-, — D¥*nny — (Dmu*) uuu;
+ (D*mau*) uing -+ nes uty; ..-(2.9)

where ;;,-, ;.-;, f denote the shear, rotation and expansion of the congruence formed
by the magnetic field lines respectively. D* stands for the directional derivative

* -
along the magnetic field lines and the projection tensor vyi; is defined as

Ti = g — s + iy, (2.10)
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3. ELECTROMAGNETIC FLUIDS AND RC

In this section, we begin to investigate the relations between certain conditions
on the electromagnetic fluids and the Ricci collineations (RC) admitted by the
electromagnetic fluid space-times.

By virtue of (2.3) and (2.4), we get
Ris = — {uoitti — pyyis + vois — Aese; — phahy + P + Py ...(3.1)
where
2pg=p+3p+plh|2+Ale] % 2p=p—pt+ulh|*+Ale[®

Let us consider the space-like symmetry mapping vectors of the form § = ou',
i.e. symmetry mapping along the direction of the fluid vorticity then we observe the
following theorem :

Theorem 3.1 — For an electromagnetic fluid with o6jwiw; = 0 admitting the
symmetry property _L R;; = 0 for £ = guw?, the conservation law (apwt).; = 0, where
g

a,zok == 0 holds if (i) the ‘energy-flux’ vector P? is parallel or antiparallel to the axis
of rotation of the fluid and (ii) Dw? = 2 {DIn ¢ — 116}.

PrOOF : It can be shown that w's! [ Ri; = 0 is equivalent to
4

pro k¥ — 2pofEDuy + 2(Py g'; W — gy PiEF) = 0, ..(3.2)

Using £ = go* and the identities o', + 2wtDu = 0,

; k
Dw# = — o'Dusu¥ + yvFiu;Duj.;m — 200t + o, o™

and

Dw? = — HBw® — 2oyw'e’ + o Duy

in (3.2) we observe that the last term of (3.2) vanishes if Pt = lw’, where A is a
non-zero arbitrary function and Dw? = 2 {D In ¢ — 118}. Consequently (3.2) yields

(po®);e = 0 ...(3.3)
which is equivalent to
(epge®);e = 0; apw? = 0 (3.9
which proves the statement,
To interpret this theorem we use the relation (Greenberg 1970)

Dind=~—Dln|w|+ wtDusf | | ..(3.5)
\
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and the identity o, + 2w*Duz = 0 in (3.3), then we get
e(p“)“’ Alw]|)=0 ...(3.6)
where 4 is the proper area subtended by the vortex lines as they pass through the

screen in the 2-surface dual to the surface formed by u; and w;. D stands for the
v

absolute derivative along the vortex lines. Equation (3.6) reveals that (p + 3p
4+ ulhi®+2A]e}?? 4] w]isconstant along the vortex tubes. This result may
be regarded as a generalization of the Kelvin-Helmholtz theorem in case of electro-

magnetic fluids.
Theorem 3.2 — For an electromagnetic fluid with ‘frozen-in’ magnetic fields
admitting the symmetry property [ Ry = 0 for £i = q)Ei, the conservation law
g
(,u},’2 B, = 0 holds if the ‘energy-flux’ vector is parallel or antiparaliel to the
electric fields.

PrOOF : The symmetry condition v _{*Ri; = 0 is equivalent to
g

fose B — 2p0B¥Duy, + 2 [PyDB* — u,.; PBY] = 0. (3.7

Using (2.8) and (2.9) fora; = e/ | e |, | e | > 0, in the resulting equation obtained
by the contraction of (2.1) with P;, we get

(PiDB? — u;;s PiBiy 4 30PB' — yii  PuyDuge,
+ (In | e | ) i Puse; + niitPuesDa, = 0 ...(3.8)

which reduces to

P.DB! — u;;sPiBi =0 ...(3.9)
when P; == Ae;, where A is a non-zero arbitrary function.

Combining (3.7) and (3.9), we have

po,B¥ — 2p,BrDut = 0. ...(3.10)
Now the electromagnetic fluid with ‘frozen-in’ magnetic fields satisfies the identity
(Prasad 1978d)

B, + BiDu* = 0. .(3.11)
In view of (3.10) and (3.11), we obtain

(W2 BY) =0 - w(3.12)

which proves the statement.
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Theorem 3.3 — For an electromagnetic fluid with ‘frozen-in’ electric fields
admitting symmetry property .EL’ Ri; =0 for ki = @Di. the conservation law
(y.(l)/ 2 D¥).x = 0 holds if the energy-flux vector is parallel or anti-parallel to the
magnetic fields,

The proof of the theorem runs on the lines of the proof of Theorem 3.2,

Now we observe a few examples of conformal motions (CM) which degenerate
into motions (M) under restrictive case in the space-time of the electromagnetic fluids.
The infinitesimal transformation ¥ = xi -+ £i8¢ defines the conformal motion if
_Lgi; = Agis, where A is non-zero scalar function, and motion if EL’g,-; = 0.

Theorem 3.4 — The conformal motion in the space-time of an electromagnetic
fluid with respect to the electric field vector degenerates into motion when the
electrical conductivity of the fluid is constant.

Proor: The conformal motion with respect to the electric field vector ' is
given by

e, = 20 = — 2e'Du. (3.13)

The conservation of electric current yields
(cu)s + kel + ke, =0 .(3.14)

where ¢ is the charge density and k the electrical conductivity of the fluid. The
conservation of charge density is given by

(ett?),; = 0. ..(3.15)
In view of (3.14) and (3.15) we conclude that
e, =0 ...(3.16)

when k is constant. Consequently A = 0 and this proves the statement.

Theorem 3.5 — The conformal motion in the space-time of an electromagnetic
fluid with respect to the magnetic field vector degenerates into motion when the
magnetic field tubes are parallel or anti-parallel to the axis of rotation of the electro-
magnetic fluid which is in ‘steady rigid rotation’.

Proor: The conformal motion with respect to the magnetic field vector is
given by

K, = 20 = — 2hiDu;. -(3.17)



RELATIVISTIC ELECTROMAGNETIC FLUIDS AND RICCI COLLINEATIONS 99

Using the fact (Prasad 1978d) [i.e. the magnetic field and fluid acceleration are
orthogonal when the magnetic field tubes are parallel or anti-parallel to the axis of
rotation of the electromagnetic fluid which is in ‘steady rigid rotation’] in (3.17) we
prove the statement,
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