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In this paper we have studied the infinitesimal variations of the structure
tensors of the almost paracontact structure induced on the hypersurface of
the almost product and almost decomposable manifold under various condi-
tions. Infinitesimal variations of the induced connexion and second funda-
mental form have also been studied in order to deduce a few interesting
results.

1. IXTRODUCTION

A differentiable manifold M, equipped with a tensor field F of type (1, 1) and a
Riemannian metric G satisfying

F* = I, G(FX, FY) = G(X, Y), (LD

X,Y being arbitrary vector fields on M, is called an almost product Riemannian
manifold. Further, if the Riemannian connexion E induced by G renders the
structure tensor F parallel, M, is called an almost product and almost decomposable

manifold.

Let us embed a hypersurface M,y into M, by the isometric immersion
b: Ms1— Ma Correspondingly we have the Jacobian b, of b, denoted by B which
carries Tp(Ma1) into Typ(Ms) injectively. Since the immersion is isometric

we have
G(BX, BY) = g(X, Y) ..(1.2)

g being the metric induced on the hypersurface and X, Y denoting arbitrary vector
fields on M,.1. Denoting the unit normal field to M1 by N we have

G(BX, N) = 0 (1.3)
G(N,N) = 1 ..(1.4)

We write the transformation equation as

BfX = F(BX) — A(X) N ..(L.5)
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where f is a tensor field of type (1, 1) and A4 is a 1-form on M,_,. It is possible
to obtain a map

B Typ)(Mn) = To(Mn-s)

such that BB =] BB'=1- N@® N*¥ BN = 0 (Blair and Ludden 1969),
where N* is the 1-form associate to N. From (1.5) we obtain

J?X = X — A(X) B7'FN. (1.6

By setting FN = BT -L aN(a being a scalar function) in the above equation
we find

X=X —-AX)T (L7
which is the almost paracontact structure (Sato 1976). It is easy to show that

ST =0, A(fX) =0, A(T) = 1. ...(1.8)
It can be proved that @ = 0 and thus

FN == BT. ...(1.9)
The metric g is found to satisfy

g(fX, fY) = g(X, Y) — A(X) A(Y). .--(1.10)

Consequently an almost paracontact Riemannian structure (f, 7, 4, g) gets induced
on Mn_l.

If D is the Riemannian connexion induced on M,_; by g, we have the Gauss
and Weingarten formulae

EpxBY = BDxY + h(X,Y) N <(L11)
EpxN = —BHX -(1.12)

where 4 is the second fundamental form of M,.1 and H is a tensor field of type (1, 1)

associated to 4, If K and K stand for the curvature tensors of the hypersurface and
the enveloping manifold, we have the Gauss and Codazzi equations

'K(BX, BY, BZ, BU) = 'K(X, Y, Z, U) — h(Y, Z) k(X, U)
+ h(X, Z) h(Y, U) (1.13)

'K(BX, BY, BZ, N) = (Dxh) (Y, Z) — (Dvh) (X, Z) ..(1.14)
where 'K and 'K are the associate covariant curvature tensors of Mn_1 and Mn.
Now let us differentiate eqn. (1.5) along the hypersurface and use £; F = 0 to get

EgyBfX = F(EpyBX) — {(Dyd) (X) + A(DxX)} N — A(X) EpyN.
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Use of (1.9), (1.11) and (1.12) reduces it to

B{Dyf) X —- WX, Y)T — AX) HY)} + {(h(fX, Y) + DyA) X} N=0
whose tangential and normal components are

Drf) X = KX, Y) T + AX) HY ...(1.15)

(DyA) X = —h(fX, Y). ...(1.16)
Covariant differentiation of (1.9) along M,_; yields

DxT = — fHX . (117)
which could have been straightaway obtained from

A(X) = (T, X) and g(fX,Y) = g(X, /Y).

The almost paracontact structure (f, T, 4) is said to be normal if
[/, f1X, Y) — @A) (X, Y) T=0

where d is the operator of exterior derivation and [/, f] is the Nijenhuis torsion of f
defined by

L) 1K Y) = [fX, fY] + f2X, Y] — fI/X, Y] — fLX, /7).
Thus the normality condition of (f, T, 4) takes the form
(Dixf) Y ~ Dexf) X + f{(Dyf) X — (Dxf) Y}
— {(DxA) Y — (Dy4) X} = 0.

If the almost paracontact structure induced on M,.; be normal we obtain from the
above condition using (1.15) and (1.16)

AX) {(Hf — fH) Y} — A(Y) {(Hf — FH) X} = 0
which, in virtue of (1.8) and (1.10), yields

Hf = fH (1.18)
whence it follows that

WT, T)T = HT -(1.19)

showing that A(T, T) is an eigenvalue of A and the corresponding eigen vector is T.
Let us denote A(T, T) by ~.

The almost paracontact Riemannian structure is called paracontact Riemannian
structure if

(Dxd) Y + (Dyd) X =2 f(X, Y) (1.20)
where (X, Y)=g(fX, Y).
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The sectional curvature of the normal paracontact Riemannian manifold with
respect to a plane section containing 7 is found, on calculation, to be —1.

More generally, we assume (Sato 1977)
(DxA) (Y) + (DyA) (X) = 2o "f(X, Y) .(1.21)

in a normal almost paracontact hypersurface of M,.

Applying (1.16) to the above equation, we have

Hf = fH = —af -..(1.22)
whence we obtain

HY = —oX + (= + ) A(X)T ...(1.23)

Equations (1.15), (1.16) and (1.17) then transform as

Dxf)Y =—a(g(X, V)T + A(Y)X) + 2(z + o) AX) AAYV)T ...(1.24)

DxA)Y = 'f(X, Y) ...(1.25)

DxT = afX ...(1.26)
-From (1.24) and (1.26), for constant «, we have

KX, Y, T)=—a2{4A(Y) X — A(X) Y}

which reveals that for a normal almost paracontact hypersurface with (1.21) involving
constant «, the sectional curvature with respect to a plane section containing T
is —a?.

Let us call such a structure a normal paracontact structure with f-sectional
curvature —o?,

2. INFINITESIMAL VARIATION OF A HYPERSURFACE OF AN ALMOST PRODUCT AND
ArMosT DECOMPOSABLE MANIFOLD

Suppose that the infinitesimal variation of the hypersurface is brought about
by the restriction of an almost decomposable Killing vector field U on the enveloping
manifold to the hypersurface. Accordingly the variation of the differential of
imbedding is given by (Yano 1977)

(3B) (X) = eEpxU .21
where ¢ is an infinitesimally small number.
Splitting U into its tangential and normal components as

U= BV + AN
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and using (1.11) and (1.12) we express (2.1) as
(BB) (X) = «{B(DxV — AHX) + (XA + WX, V)) N}. ..(2.2)
The infinitesimal variation of N is given by (Yano 1957)
3N = ¢LyN = ¢ BW

LyN, the Lie derivative of N being orthogonal to N, Infinitesimal variation of
eqn. (1.3) yields

G(BDxV + h(X, VIN +- (X)) N — ABHX, N) = —G(BX, BW)
which implies
W = —(HV + A)
where A stands for the vector field associate to the gradient of A. Thus we obtain
3N = —eB(HV + A). ..(2.3)
Now varying eqn. (1.5) infinitesimally we find
(B) (fX) + B(3f) X = F((3B) X) — (34) (X) N — A(X) 3N.

Making use of (1.5), (2.2) and (2.3) in it we find
BOf)X - 34) (X) N = «{B(f(DxV — AHX)) + A(DxV — AHX) N
~ (WX, V) + XX) BT — BDsxV + ABHfX
— K(fX, V)N — (fX) AN + A(X) B(HV + N}
Equating the tangential and normal components we have
BGf)X = e{f(DxV — MHX) + (WX, V) + XN) T — DixV
 AHfX 4+ A(X) (HV + A} ...(2.4)
(34) (X) = {d(DxV — AHX) — h(fX, V) — (fX) A}. . (2.5)

Since the Lie derivative of f along V is given by
Lvf) X = Ly(fX) — f(LvX)
= Dyv(fX) — DxV — f(DvX — DxV)
eqn. (2.4) assumes the form
$f)X = e{(Lv )X + MH — fH) X + (WX, V) + XN T
+ A(X) (HV + D) — (Dvf) X}
Using (1.15) in the above equation we.have

Of) X = {Lvf) X+ B — fH) X + (XN T + 4(X) A} ...(2.6)
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Applying eqn. (1.16) and the definition

(LyA) X = (DvA) X + A(DxV)
in (2.5) we have

(BA) X = {(LvA) X — M(HX) — (fX) AL ..(2.7)
Next varying eqn. (1.9) infinitesimally we see that

—e¢F(B(HV 4- A) = BST + (8B) T
which yields by virtue of (1.5) and (2.2)

B3T + «{B(DrV — XAHT) + ((TA + KT, V)) N

+ Bf(HV -+ A) + A(HV 4 AYN} =0

whose tangential part reduces in virtue of (1.17) to

3T = «{LyT -+ AHT — fA}. ...(2.8)

Lastly, varying eqn. (1.2) infinitesimally we get

®g) (X, Y) = G((8B) X, BY) + G(BX, (3B) Y)
which reduces by virtue of (2.2) to

(3g) (X, Y) = e{(Lvg) (X, Y) — 2Ah(X, Y)}. ...(2.9)
Thus we established the following :

Theorem 2.1 — When a hypersurface of an almost product and almost decom-
posable manifold is varied infinitesimally by means of a vector field U = BV - AN,

the structure tensors of the almost paracontact hypersurface vary according to egns.
(2.6), (2.7), (2.8) and (2.9).

Corollary 2.1 — When a hypersurface of an almost product and almost decom-
posable manifold is given infinitesimal tangential variation by means of BV, the
variations of the induced almost paracontact structure tensors on the hypersurface
are given by their Lie derivatives along V.

Corollary 2.2 — When a hypersurface of an almost product and almost decom-
posable manifold is given infinitesimal normal variation by means of AN, the
variations of the induced almost paracontact structure tensors on the hypersurface
are gived by

@ @) X)=eMH — fH)X + (X)) T + A(X) A} WI
(0) (34) (X) = ¢QA(HX) + (fX) X} 4 ...(2.10)
(c) 8T = e{AHT — fA}, (d) (58) (X, Y) = —2 (X, Y). Jl
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Next we say that the infinitesimal variation is parallel when BX and BX are
both parallel, equivalently when (8B) X is tangential to the original hypersurface.
Since

(®B) X = «{B(DxV — AHX) + (XA + h(X, V) N}
therefore for an infinitesimal parallel variation it is necessary and sufficient that
XA+ KX, V)= 0. 210
Theorem 2.2 — An infinitesimal normal variation of a hypersurface will be
parallel iff A is constant.

Proof is obvious.

Corollary 2.3 — When a hypersurface of an almost product and almost
decomposable manifold is given infinitesimal normal parallel variation, the structure
tensors f, T, A and g of the hypersurface vary as

(@) 3N (X) = e(Hf — fH) X, (b) (34) (X) = —ed4(HX) 7} s

..(2.12

(c) 8T = &HT, (d) (32) (X, Y) = —2e\h(X, Y). ] (212

Corollary 2,4 — Let the structure induced on a hypersurface of an almost
product and almost decomposable manifold be a normal paracontact structure with
f-sectional curvature —a®. Then the infinitesimal normal parallel variation of the
hypersurface makes the structure tensors vary as

@@ ()X =0, (b) (34) X = —ex<T, ]
(©) 8T = er<T, i> (2.13)
(@ (8 (X, ¥) = —2eA{— ag(X, ¥) + (= + @) A(X) A(Y)}. |

3. VARIATION OF THE INDUCED CONNEXION AND SECOND FUNDAMENTAL
ForM OF THE HYPERSURFACE

Varying infinitesimally the Gauss formula
EpxBY = BDxY + h(X, Y)N
we have
e«(LvE) (BX, BY) = B{(8D) (X, Y)} + (8h) (X, Y) N + &(X, Y) 6N

where we have followed the settings EX,Y = EX, Y) and DxY = DX, Y). The
above equation can be put in the form (Yano 1970)
e{K(U, BX, BY) + EpxEprU — Egp,BrU}
= B{@BD)(X,Y) — (X, Y)(HV + A) + G (X, Y)N

where we used (2.3).
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Substituting BV -~ AN for U and using Gauss formula we transform the above
equation as

B{BD) (X, Y) — «h(X, Y)(HV + A} + B (X, Y) N
= ¢[B{DxDyV — Dp vV — (DxAH) Y — (YA + h(Y, V)) HX}
+ K(BV, BX, BY) + AK(N, BX, BY) - h(X, DyV — AHY)
4+ XYXA —~ (DxY) A + (Dxh) (Y, V) + A(Y, DxV)} N]
which is separated into tangential and normal parts as
(3D) (X, Y) = {DxDyV + K(V, X, Y) — Dp vV — (DrAH) X
— (DxAH) Y + KX, Y) A + M*(X, Y)}
= e{(LyD) (X, Y) — (DyAH) X — (DxAH) Y + h(X, Y)A
+ AF(X, Y)}
where we set
g™ (X, Y),Z) = (Dzh) (X, Y)
and
(h) (X, Y) = «{(Dvi)(X, Y) + NK(N, BX, BY, N) + h(X, DyV)
— M(X, HY) + XYA — (DxY) A 4+ (Y, DxV)}
= e{(Lvh) (X, Y¥) — (X, HY) - XYA — (DxY) A
+ XK(N, BX, BY, N)}.

Hence we have the following :

Theorem 3.1 — The infinitesimal variation of the hypersurface brings about the
following variations in the connexion and the second fundamental form :

(3D) (X, Y) = {(LyD) (X, ¥) — (DyAH) X — (Dx\H) Y
+ WX, Y)A 4+ M X, Y)} (3.1
and
(Bh) (X, Y) = e{(Lvh) (X, Y) — Mi(X, HY) + XYA — (DxY) )
+ XK(N, BX, BY, N)} ..(3.2)

Corollary 3.1 — If the infinitesimal variation of the hypersurface were tangential,
the variations of D and h would be given by their Lie derivatives along V.

Corollary 3.2 — If the infinitesimal variation of the hypersurface were normal,
the variations of D and 4 would be given by
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(D) (X, Y) = e{h(X, Y) A + MXX, Y) — (DyAH) X — (Dx\H) Y}
..(3.3)

(k) (X, Y) = e{XYX — (DxY) A + 'K(N, BX, BY, N) — M(X, HY)}
(3.4)

4. VARIATION OF NORMAL PARACONTACT HYPERSURFACE WITH f-SECTIONAL
CURVATURE —o?

Let us assume that the hypersurface bears a normal paracontact structure with
f-sectional curvature — a2

Theorem 4.1 — A normal paracontact hypersurface with f-sectional curvature
—2 will be varied infinitesimally to a normal paracontact hypersurface with f-sec-
tional curvature —e2 — 822 iff’ A satisfies the differential equation
e[XYX — (DxY) X + A{K(N, BX, BY, N) + «*g(X, Y)
— A(X) A(Y)} + {(DrT) X — TTA} A(X) AY)
+ (¢ + @) {(fX) 24T} + (fT) 2M4(X)]]
= {A(X) A(Y) — g(X, Y)} da. ...(4.1)

ProOF : The normal paracontact hypersurface with f-sectional curvature —a?
will be varied infinitesimally to a normal paracontact hypersurface with f-sectional

curvature —o? — a2 iff
(Oh) (X, ¥) = — (30) g(X, ¥) — a(3g) (X, Y)
+ {Bh) (T, T) + 2K(T, 3T) + 8} A(X) A(Y)
+ (v + @) {(34) (X) A(Y) + (34) (Y) 4(X)} ---(4.2)
which with the help of egns. (2.7), (2.8), (2.9), (3-2) and
(Lvh) (X, ¥) = —a(Lvg)(X. ¥) + {(Lvh)(T, T) + 2h(LvT, T) A(X) A(Y)
+ (= + o) {(LvA) (X) A(Y) + A(X) (Lv4) (Y)}
becomes
e{XYA — (DxY) A + NK(N, BX, BY, N) — M(X, HY)}
= 2aeM(X, Y) + e{TTA — (DrT) A — (T, HT)
+ 2T, AHT — fA) + (1/e) 8a} A(X) A(Y) ~ e(= + ) {(A4(HX)
+ (fX) ) A(Y) + (Q4(HY) + (fY) 2) 4(X)}.
Now we have

KX, HY) = a2g(X, Y) + (* + o?) A(X) A(Y)
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and in particular

KT, HT) = =2.
Consequently the above condition reduces to (4.1).

Conversely if A satisfies the differential eqn. (4.1), then by retreating the steps we
get (4.2).

Corollary 4.1 — The infinitesimal normal parallel variation carries a normal
paracontact hypersurface with f-sectional curvature —a® to a normal paracontact
hypersurface with f-sectional curvature —a? — 8«2 iff

Ae{'K(N, BX, BY, N) + a*(g(X, Y) — A(X) A(Y)}
= {A(X) A(Y) — g(X, Y)} Sa. ...(4.3)

Corollary 4.2 — 1f the enveloping manifold of Corollary (4.1) be flat the condition
reduces to

So = — Aex?, ...(4.4)

Corollary 4.3 — It is impossible to carry a normal paracontact hypersurface
(with f-sectional curvature —1) of a flat almost product and almost decomposable
manifold over to a normal paracontact hypersurface by an infinitesimal normal
parallel variation.

Now let the enveloping manifold be an almost product and almost decomposable
manifold of almost constant curvature so that its curvature temsor is given by
(Yano 1965)

'K(X, Y, Z,W) = a[GX, W) G(Y, Z) — G(X, Z) G(Y, W)
+ 'F(X, W)'F(Y, Z) — F(X, Z) 'F(¥, W)]
+ b['F(X, W) G(Y, Z) — "F(X, Z) G(Y, W)
+ G(X, W)'F(Y,Z) — G(X, Z)'F(Y, W)].  ..(4.5)

For this case the condition (4.3) reduces to
(a + b+ %—) (8(X, ¥) — A(X) A(Y)} = b{g(X, Y) — 'F(X, Y)}
which yields on contraction
{a Sb o+ %‘} (n—2) =bn — 1= f). (4.6)
Now contracting eqn. (4.5), we get

Ric(¥, 2) = {a(n — 2) + bf} G(¥, Z) + {af + b(n — 2} 'F(¥, 2) ..(4.7)
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which shows that the enveloping manifold is also an almost Einstein manifold (Yano
1965). Let us frame an orthonormal base {Be;, BT, N}i-1, ... ,n2 Of Topy(Mn) for
any point p € Mas. Obviously {ei, T}y, ...,n-2 forms an orthonormal base of
To(Ms). Putting X = Y = e; and summing over ¢ in eqn, (4.3) we find

A{Ric (N, N) -+ «2(n — 2)} = —(n — 2) 3a.

Substituting for Ric (N, N) from (4.8) we have
eMa(n — 2) + bf + o¥(n — 2)} = —(n — 2) du. ...(4.8)
Equations (4.6) and (4.8) yield # = 0 and hence
e = —eAa 4 «?),
As a result we have the following :

Corollary 4.4 — If the infinitesimal normal parallel variation carries a normal
paracontact hypersurface (with f-sectional curvature —«?) of a manifold of almost
constant curvature to a normal paracontact hypersurface with f-sectional curvature
—a? — 3a?, then

So = —eMa + %)
and the enveloping manifold reduces to an Einstein manifold.

Corollary 4.5 — If the infinitesimal normal paralle]l variation carries a normal
paracontact hypersurface (with f-sectional curvature —a?) of a manifold of almost
constant curvature to a normal paracontact bypersurface (with f-sectional curvature
—22), then the f-sectional curvature of either of the original and varied hypersurfaces
is equal to the almost constant curvature @ of the enveloping manifold which reduces
to an Einstein manifold whose scalar curvature is equal to n(n — 2) a.
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