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In this paper nonunique fixed point theorems have been established for Ciric
type maps on a orbitally complete metric space into itself.

1. INTRODUCTION

Recently, Ciric (1974) proved some nonunique fixed point theorems for orbitally
continuous self mappings T on M which satisfy a condition of the type
min {d(Tx, Ty), d(x, Tx), d(y, Ty)}
— min {d(x, Ty), d(y, Tx)} < qd(x, y),
for all x,y € M and for some g € (0, 1). The purpose of the present paper is to

establish some fixed point theorems for mappings T on M which are not necessarily
continuous and which satisfy a condition of the type

min {{d(Tx, Ty)P, d(x, y) d(Tx, Ty), [d(3, Ty)I*}
— min {d(x, Tx) d(y, Ty), d(x, Ty) d(y, Tx); < qd(x, Tx) d(y, Ty),
for all x, y € M and for some ¢ € (0, 1).

2. MAIN RESULTS

Let (M, d) be a metric space. We recall that (see Ciric 1974) a mapping T on

M is orbitally continuous if lim T" x = u implies lim TT": x = Tu for each x € M.
i i

A space M is T-orbitally complete if every Cauchy sequence of the form {T™: x}°° ,

x € M, converges in M. Our main result in this paper reads as follows.

Theorem 1 — Let T: M — M be an orbitally continuous mapping on M and let
M be T-orbitally complete. If T satisfies the following condition

mm {[d(Tx’ Ty)]2$ d(xa y) d(sz Ty)’ [d(J’: Ty)]‘z}
— min {d(x, Tx) d(y, Ty), d(x, Ty) d(y, Tx)} < qd(x, Tx) d(y, Ty)
()
for all x,y € M and g € (0, 1), then for each x € M, the sequence {Tnx}7,

converges to a fixed point of 7.
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Proor: Let x € M be arbitrary. We define a sequence
Xg = X, X, = Txg, X9 = Ty, .c., Xn = TXn_1, .... ...(2)

If for some n, xn = Xn4u, then {x,} is a Cauchy sequence, and the limit of {x,} is a
fixed point of 7. Suppose that x, 5% xay1 for each n=0,1,2,.... By (1) for
X = Xn.1 and y = xn we have

min {[d(Xn, x,.+1)]2, d(Xn-I, Xn) d(Xn, Xn+1), [d(x,., .Xn+1)]2}

— min {d(Xn-1, Xn) d(Xu, Xn31), 0} < qd(Xn_1, Xn) d(Xn, Xn41)
i.e. mia {{d(Xn, Xa11)]?, d(Xn1, Xn) d(Xn, Xn420)} K qd(Xn-1, Xn) d(Xn, Xni1).
Since d(Xn-1, Xa) d(Xn, Xn11} < gd(Xn-1, Xn) d(Xn, Xny1)

is impossible (as g < 1), one has
d(xn, Xni1) K gd(Xn-1, Xn).
Proceeding in this manner we obtain
d(Xn, Xn11) < qd(Xu-1, Xn) K ¢2d(Xn_2, Xn1) < ... K grd(x, Tx).

Hence for any p € I one has

n+p--1 n4p—1
d(Xn, Xnip) < z d(Xx, Xi1) < ( z q’c) dix, Tx) < li_ﬂ—q d(x, Tx).
k=n k=n

Since lim g® = 0 it follows that (2) is the Cauchy’s sequence. M being T-orbitally
n

complete, there is some u € M such that ¥ = lim T»x. By orbital continuity of T
n

Tu = lim TT»x = u,
n

i.e. uis a fixed point of 7. The proof of the theorem is complete.

Recently, Achari (1976) has obtained a localized version of Ciric’s fixed point

theorem (Ciric 1974, Theorem 1). Our next result deals with a localized version of
our Theorem 1.

Theorem 2 — Let
B = B(xo, 1) {x € M| d(xy, x) < 1}

where (M, d) is a orbitally complete metric space. Let T be an orbitally continuous
mapping of B into M and satisfies (1) for x, y € B and

dixe, Txg) < (1 —¢q)r. w(3)
Then T has a fixed point.
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Proor : By (3) we have
x; = Tx, € B(x,, r)
and by (1) for x = x, and y = x,, we have
min {[d(xy, x,)1?, d(xq, x;) d(x4, x,) [d(x,, x,)]%}
— min {d(x,, X;) d(x, X,), d(xg, X3) d(%1, X1)} < qd(xg, X;) d(x1, X,)
which implies
d(x;, x;) < qd(xg, ) < gL — @) -
Hence
d(x,, x.) < d(xg, X,) + d(x;, X,), (x, = Txy)
SU=@r+ql-qr=>0+p0—-ar
Suppose that
dixe, xa) < (} + g+ ... + g A —q)r
and that
d(xn-1, Xn) < @11 — @) 1, (Xn = TXn-a2)-
Then by (1) for x = xa_; and y = xn, we have
min {{d(Xa, Xn )], d(Xn-1, X3) d(Xn, Xn32), [d(xn, Xn2)]?}
— min {d(xn_1, Xn) d(Xn, X¥n:1), d(Xn_1, Xns1) d(Xn, Xa)}
< gd(xXu-1, Xn) d(Xn, Xu11)
which implies
d(xn, Xas1) < qd(xno1, Xa) < g1 — @) 1
Therefore
d(xg, Xns1) < d(xg, Xn) + d(Xn; Xns1)
SU+gt..+aeVl-r+gd—ar
= +g+..+U-—@Qr<r
Thus the scquence Xo, Xas1 = Ixn, 7 2 0 i3 contained in B. Also
d(Xny Xm) K d(Xn, Xng1) + o+ d(Xm-1, Xm)
<@ + .+ HA—-r<gir—>0

Since B is also orbitally complete, so u = lim Tnx for some u € B. By orbital
n

continuity of T we have
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Tu = lim TTrx = u.
n

Thus u is a fixed point of 7. This completes the proof of the theorem.

To this end we establish the following theorem initiated by Maia’s (1968) fixed
point theorem,

Theorem 3 — Let M be a metric space with two metrices d and 8. If M
satisfies the following conditions :

(1) d(x,y) < ¥x,y) forevery x,y in M,
. (ii) M is orbitally complete with respect to d,
(iif) the mapping T: M — M is orbitally continuous with respect to d, and
min {[}Tx, Ty)?, 3(x, ») 3T, Ty), (. TP}

— min {3(x, Tx) 8y, Ty), 8(x, T¥) 8(», Tx)} < q3(x, Tx) 3(y, Ty),
(B
forall x,y € M and g € (0, 1), then T has a fixed point in X.

ProOF : Let x, € X be arbitrary and define a sequence {x.} asin (2). By
(4) for x = xn_y and y = x,, we have

min {[8(Xn, Xn41)1%, 8(Xn-1, Xn) 3(Xn, Xuys1), [8(Xn, Xni1)]"}
— min {S(Xn—ly xn) B(Xn, x,.+1), 8(xn—1, Xn+1) 8(-xn, xn)}

< gd(Xn_1, Xn) 8(Xn, Xn41)
which implies
3(Xa, Xn11) < g3(Xn-1, Xu).
Proceeding in this way
3(Xn, Xny1) K gO(Xn-1, Xa) < ... K gn8(xy, X,)

and hence

(Xny Xnip) < 3(Xgs X1)

q
l—gq
where p is any positive integer. Therefore, by d < 3, we have

qn
l1—-gq
This shows that the sequence {x.} is a Cauchy sequence with respect to d. M being
T-orbitally complete, there is some u € M such that u = lim T»x, By orbital

n

d(xn, Xnip) < 3(xq, Xy)-

continuity of T’
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Tu = lim TT"x = u.
n

Thus u is a fixed point of T and hence the proof of the theorem is complete.

Finally we note that the conclusions of Theorems 1 and 2 remains valid if we
replace the condition (1) by

min {[d(Tx, TV, d(x, ) d(Tx, Ty), [, THP)
— min {d(x, Ty), d(y, Tx)} < qd(x, Tx) d(y, Ty) . (5)

for all x,y € M and ¢ € (0, 1). We also note that the conclusion of Theorem 3
remains valid by using the modified version of condition (5).
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