ON CIRIC TYPE MAPS WITH A NONUNIQUE FIXED POINT

B. G. PACHPATTE

Department of Mathematics and Statistics, Marathwada University, Aurangabad

(Received 30 November 1978)

In this paper nonunique fixed point theorems have been established for Ciric type maps on a orbitally complete metric space into itself.

1. Introduction

Recently, Ciric (1974) proved some nonunique fixed point theorems for orbitally continuous self mappings T on M which satisfy a condition of the type

min
$$\{d(Tx, Ty), d(x, Tx), d(y, Ty)\}\$$

$$- \min \{d(x, Ty), d(y, Tx)\} \le qd(x, y),$$

for all $x, y \in M$ and for some $q \in (0, 1)$. The purpose of the present paper is to establish some fixed point theorems for mappings T on M which are not necessarily continuous and which satisfy a condition of the type

$$\min \{ [d(Tx, Ty)]^2, d(x, y) d(Tx, Ty), [d(y, Ty)]^2 \}$$

$$- \min \{ d(x, Tx) d(y, Ty), d(x, Ty) d(y, Tx) \} \leqslant qd(x, Tx) d(y, Ty),$$

for all $x, y \in M$ and for some $q \in (0, 1)$.

2. MAIN RESULTS

Let (M, d) be a metric space. We recall that (see Ciric 1974) a mapping T on M is orbitally continuous if $\lim_{i} T^{n_i} x = u$ implies $\lim_{i} TT^{n_i} x = Tu$ for each $x \in M$.

A space M is T-orbitally complete if every Cauchy sequence of the form $\{T^{n_i} x\}_{i=1}^{\infty}$, $x \in M$, converges in M. Our main result in this paper reads as follows.

Theorem 1 — Let $T: M \to M$ be an orbitally continuous mapping on M and let M be T-orbitally complete. If T satisfies the following condition

$$\min \{ [d(Tx, Ty)]^2, d(x, y) \ d(Tx, Ty), [d(y, Ty)]^2 \}$$

$$- \min \{ d(x, Tx) \ d(y, Ty), d(x, Ty) \ d(y, Tx) \} \leqslant qd(x, Tx) \ d(y, Ty)$$
...(1)

for all $x, y \in M$ and $q \in (0, 1)$, then for each $x \in M$, the sequence $\{T^n x\}_{n=1}^{\infty}$ converges to a fixed point of T.

PROOF: Let $x \in M$ be arbitrary. We define a sequence

$$x_0 = x, x_1 = Tx_0, x_2 = Tx_1, ..., x_n = Tx_{n-1}, ...$$
 ...(2)

If for some $n, x_n = x_{n+1}$, then $\{x_n\}$ is a Cauchy sequence, and the limit of $\{x_n\}$ is a fixed point of T. Suppose that $x_n \neq x_{n+1}$ for each $n = 0, 1, 2, \ldots$. By (1) for $x = x_{n-1}$ and $y = x_n$ we have

min {
$$[d(x_n, x_{n+1})]^2$$
, $d(x_{n-1}, x_n)$ $d(x_n, x_{n+1})$, $[d(x_n, x_{n+1})]^2$ }
- min { $d(x_{n-1}, x_n)$ $d(x_n, x_{n+1})$, 0} $\leq qd(x_{n-1}, x_n)$ $d(x_n, x_{n+1})$

i.e. $\min \{ [d(x_n, x_{n+1})]^2, d(x_{n-1}, x_n) \ d(x_n, x_{n+1}) \} \leqslant q d(x_{n-1}, x_n) \ d(x_n, x_{n+1}).$

Since $d(x_{n-1}, x_n) d(x_n, x_{n+1}) \le q d(x_{n-1}, x_n) d(x_n, x_{n+1})$

is impossible (as q < 1), one has

$$d(x_n, x_{n+1}) \leqslant qd(x_{n-1}, x_n).$$

Proceeding in this manner we obtain

$$d(x_n, x_{n+1}) \leqslant qd(x_{n-1}, x_n) \leqslant q^2d(x_{n-2}, x_{n-1}) \leqslant ... \leqslant q^nd(x, Tx).$$

Hence for any $p \in I^+$ one has

$$d(x_n, x_{n+p}) \leqslant \sum_{k=n}^{n+p-1} d(x_k, x_{k+1}) \leqslant \left(\sum_{k=n}^{n+p-1} q^k\right) d(x, Tx) \leqslant \frac{q^n}{1-q} d(x, Tx).$$

Since $\lim_{n} q^{n} = 0$ it follows that (2) is the Cauchy's sequence. M being T-orbitally complete, there is some $u \in M$ such that $u = \lim_{n \to \infty} T^{n}x$. By orbital continuity of T

$$Tu = \lim_{n} TT^{n}x = u,$$

i.e. u is a fixed point of T. The proof of the theorem is complete.

Recently, Achari (1976) has obtained a localized version of Ciric's fixed point theorem (Ciric 1974, Theorem 1). Our next result deals with a localized version of our Theorem 1.

Theorem 2 - Let

$$B = B(x_0, r) \{x \in M \mid d(x_0, x) \le r\}$$

where (M, d) is a orbitally complete metric space. Let T be an orbitally continuous mapping of B into M and satisfies (1) for $x, y \in B$ and

$$d(x_0, Tx_0) \le (1 - q) r.$$
 ...(3)

Then T has a fixed point.

PROOF: By (3) we have

$$x_1 = Tx_0 \in B(x_0, r)$$

and by (1) for $x = x_0$ and $y = x_1$, we have

min {
$$[d(x_1, x_2)]^2$$
, $d(x_0, x_1)$ $d(x_1, x_2)$ $[d(x_1, x_2)]^2$ }
 $= \min \{d(x_0, x_1) \ d(x_1, x_2), \ d(x_0, x_2) \ d(x_1, x_1)\} \leqslant qd(x_0, x_1) \ d(x_1, x_2)$

which implies

$$d(x_1, x_2) \leqslant q d(x_0, x_1) \leqslant q(1-q) r$$
.

Hence

$$d(x_0, x_2) \leqslant d(x_0, x_1) + d(x_1, x_2), (x_2 = Tx_1)$$

$$\leqslant (1 - q) r + q(1 - q) r = (1 + q) (1 - q) r.$$

Suppose that

$$d(x_0, x_n) \le (1 + q + ... + q^{n-1})(1 - q)r$$

and that

$$d(x_{n-1}, x_n) \leqslant q^{n-1}(1-q) r, (x_n = Tx_{n-1}).$$

Then by (1) for $x = x_{n-1}$ and $y = x_n$, we have

$$\min \{ [d(x_n, x_{n+1})]^2, d(x_{n-1}, x_n) \ d(x_n, x_{n+1}), [d(x_n, x_{n+1})]^2 \}$$

$$= \min \{ d(x_{n-1}, x_n) \ d(x_n, x_{n+1}), \ d(x_{n-1}, x_{n+1}) \ d(x_n, x_n) \}$$

$$\leq q d(x_{n-1}, x_n) \ d(x_n, x_{n+1})$$

which implies

$$d(x_n, x_{n+1}) \leq q d(x_{n-1}, x_n) \leq q^n(1-q) r.$$

Therefore

$$d(x_0, x_{n+1}) \leq d(x_0, x_n) + d(x_n, x_{n+1})$$

$$\leq (1 + q + ... + q^{n-1}) (1 - q) r + q^n (1 - q) r$$

$$= (1 + q + ... + q^n) (1 - q) r \leq r.$$

Thus the sequence $x_0, x_{n+1} = Tx_n, n \ge 0$ is contained in B. Also

$$d(x_n, x_m) \leqslant d(x_n, x_{n+1}) + \dots + d(x_{m-1}, x_m)$$

$$\leqslant (q^n + \dots + q^{m-1}) (1 - q) r \leqslant q^n r \to 0.$$

Since B is also orbitally complete, so $u = \lim_{n} T^{n}x$ for some $u \in B$. By orbital continuity of T we have

$$Tu = \lim_{n} TT^{n}x = u.$$

Thus u is a fixed point of T. This completes the proof of the theorem.

To this end we establish the following theorem initiated by Maia's (1968) fixed point theorem.

Theorem 3 — Let M be a metric space with two metrices d and δ . If M satisfies the following conditions:

- (i) $d(x, y) \leq \delta(x, y)$ for every x, y in M,
- (ii) M is orbitally complete with respect to d,
- (iii) the mapping $T: M \to M$ is orbitally continuous with respect to d, and min $\{[\delta(Tx, Ty)]^2, \delta(x, y), \delta(Tx, Ty), [\delta(y, Ty)]^2\}$

$$-\min \{\delta(x, Tx) \ \delta(y, Ty), \ \delta(x, Ty) \ \delta(y, Tx)\} \leqslant q \delta(x, Tx) \ \delta(y, Ty),$$
...(4)

for all $x, y \in M$ and $q \in (0, 1)$, then T has a fixed point in X.

PROOF: Let $x_0 \in X$ be arbitrary and define a sequence $\{x_n\}$ as in (2). By (4) for $x = x_{n-1}$ and $y = x_n$, we have

min {
$$[\delta(x_n, x_{n+1})]^2$$
, $\delta(x_{n-1}, x_n)$ $\delta(x_n, x_{n+1})$, $[\delta(x_n, x_{n+1})]^2$ }

— min { $\delta(x_{n-1}, x_n)$ $\delta(x_n, x_{n+1})$, $\delta(x_{n-1}, x_{n+1})$ $\delta(x_n, x_n)$ }

 $\leqslant qd(x_{n-1}, x_n)$ $\delta(x_n, x_{n+1})$

which implies

$$\delta(x_n, x_{n+1}) \leqslant q \delta(x_{n-1}, x_n).$$

Proceeding in this way

$$\delta(x_n, x_{n+1}) \leqslant q \delta(x_{n-1}, x_n) \leqslant \ldots \leqslant q^n \delta(x_0, x_1)$$

and hence

$$\delta(x_n, x_{n+p}) \leqslant \frac{q^n}{1-q} \, \delta(x_0, x_1)$$

where p is any positive integer. Therefore, by $d \leq \delta$, we have

$$d(x_n, x_{n+p}) \leqslant \frac{q^n}{1-q} \, \delta(x_0, x_1).$$

This shows that the sequence $\{x_n\}$ is a Cauchy sequence with respect to d. M being T-orbitally complete, there is some $u \in M$ such that $u = \lim_{n} T^n x$. By orbital continuity of T

$$Tu = \lim_{n} TT^{n}x = u.$$

Thus u is a fixed point of T and hence the proof of the theorem is complete.

Finally we note that the conclusions of Theorems 1 and 2 remains valid if we replace the condition (1) by

min
$$\{[d(Tx, Ty)]^2, d(x, y) \ d(Tx, Ty), [d(y, Ty)]^2\}$$

 $- \min \{d(x, Ty), d(y, Tx)\} \le qd(x, Tx) \ d(y, Ty)$...(5)

for all $x, y \in M$ and $q \in (0, 1)$. We also note that the conclusion of Theorem 3 remains valid by using the modified version of condition (5).

REFERENCES

Achari, J. (1976). On Ćiric's nonunique fixed points. Math. Vesnik, 13, 255-57.

Ciric, Lj. B. (1974). On some maps with a nonunique fixed point. *Pub. Inst. Math.*, 17, 52-58. Maia, M. G. (1968). Un'osservazione sulle contrazioni metriche. *Rend. Sem. Mat. Padova*, 40, 139-43.