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The author applies a generalized Fourier series expansion to obtain solution of
any order for the Duffing non-linear oscillator.

1. INTRODUCTION

It is well known that the straight forward expansion method is not valid in
case of non-linear oscillators. A number of techniques have been developed in the
past to overcome this difficulty (for example see Nayfeh 1973, Giacaglia 1972).

In this note we apply a generalized Fourier series expansion to obtain solution of
any order for the Duffing non-linear oscillator.

2. METHOD OF SOLUTION

Let us consider the Duffing non-linear oscillator which has the following
equation of motion

2
%—{- wp X = —ex3 ..

with x(0) =a and x(0) =0

We seek a solution of (1) in the form

x(t) = by ay 7172 cOs nwt ..(2)
n=1,3,5, etc.
where
n—1
an = 2 Amne™ ...(3)
m=0
and
(e8]
w= X wne™ ...(39)
m=0

a» may depend on ¢ but we consider w to be independent of ¢ to prevent secular
term appearing on the 1. h.s. of (1) when the expression (2) would be used. Also the
first term in the expansion (3a) is identical with w, of eqn. (1).
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The reason for taking only odd integer values in the expansion (2) will be clear
from the fact that r. h.s. of (1) contains an odd power of x and also

cos® z = } [3 cos z 4 cos 3Z] (4

Of course, one can take a more general Fourier series instead of (2) and would
arrive at the same results as with (2), though the calculations will be slightly
more lengthy.

Putting (2) in (1), we get

T (an + (0} — n%w?) cos nwt "1 /2 — 2T nwa, sin not =112
n n

= — € LTI litmtn-3)2q,q,.0, COS Nt COS Mwt cos lwt (5
Imn

=_% E E E Ay LM n=3) /2
I m n

X [cos(m +n+1)wt +cos(m+n—1)wt
+cos(m—n+4 1wt +cos(m —n — 1) wt] ...(6)

where a dot denotes derivative with respect to ¢.
Since right-hand side of (6) does not contain any sine term

an =0 forall n. D)
Hence a., are independent of ¢ also,

an = 0. ..(8)

Therefore, multiplying both the sides of (6) by cos kwt (k = 1, 3, 5...) and integrating
with respect to ¢ from 0 to =, we have

(w§ — K2w?) apelk-1)2 = % [ E E E etmin-n2g.q. a0
I m n

X (Skam+ﬂ+l + Sk, [min-t] ~+ Sk, | m—ntlt
+ 8k91m‘"’“ l) (k = 15 3; Sr ...) ...(9)

where 8:; denotes the Kronecker delta defined by

5 1)li=j

=4 i £ ...(10)
Putting k = 1, 3, 5 respectively, we get from (9)

(0§ — 0?) a; = — % [3a3 4+ 34} a;e + 6€2aj a; + O(e¥)] ...(11)
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c(wd — 90%) ag = — =~ [a] + 63l age + 3al g;et + O()]  ..(12)
2w} — 25w?) @y = — ~§~ [3a} aze + 6¢al a; + 3e%ai a, + O(d)]
-.(13)

Taking a, = a;, = a and equating terms of the first order we get from (11) and (12)

— 2awpw, = — 3 ad ...(14)
and

— 8wday, = — }a. ..(15)
Solving them we get

w; = 3a%/8w, ...(16)

ay; = a%/32w}. (17
Hence, to the first order,

X = acos w + ‘ﬁa—;z%f—g—m L O(e) .(18)
where

w:wo(l v g‘f:) .(19)

a result obtained by various other methods, for example, the method of strained
coordinates due to Lindstedt (1882) and Poincare (1967), the method of averaging by
Krylov and Bogoliubov (1947) and Bogoliubov and Mitropolski (1961) and the
method of coherent state constructed out of quantum oscillator proposed by Bhaumik
and Dutta Roy (1975).

If we equate the terms of 2nd order in ¢, then we get from (11), (12) and (13),
three equations involving w, and ay,, a5;.  Solving them we get,

wy = — 15a4/2560} ...(20)

a;; = — 21a5/1024w§ ...(21)
and

ags = a°/1024w§. ...(22)

Hence, to the second order

X = a cos wt + 32 E cos 3wt — 1024 4(21 c0s 3wt — cos Swt) + O(e?)
...(23)
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where

..(24)

3. HiGHER ORDER TERMS

The solution given by (23) and (24) is identical with that obtained by Struble
(1962). But to get third order terms, Struble’s method becomes very much involved.
If one wishes, one can obtain terms up to any order very easily by our methods. One
has to put simply & = 7, 9, ... etc., and solve the subsequent equations for amn.

For example, if we put & = 7 in (9) we get
Hwl — 490?) a, = — 7} [3e2a? a; + O(8)] + 3%l a, ...(25)

Now equating terms of order ¢ from both the sides of eqns. (11) - (13) we have

— 20w, — 2wywy = — 3 [3a%ay; + 6al; a] ...(26)
— Y} ayy — 8wl ayy — 18wowidy; — 18wewyay, = — 1{6a%a; + 3a2ay;]

27
— 240§ a5 — S0wgw,a45 == — 1 [3a%a,, -+ 6a%a,; + 3ais; a) ...(28)
— 48wl ay, = — 2 (aaqy; - ai; a). ...(29)

Solving eqns. (26) - (28) we get

wy = 123a5/8.1024w3 ...(29a)
ay, = 83447/64.1024w§ .-.(30)
Ggy = 2a7[64.10240§ .-.(31)
a5 = — 86/64.102408. .(32)

Hence, to the third order

_ ea® €2ad
X = acos wf + 3203 COS Jwt — 102403 (21 cos 3wt — cos Swt)

e3a?

VR (834 cos 3wt — 86 cos Swt + 2 cos Twt) + O(ef)
(33)

where

3ea®  15e2gt 123300 ‘
w = “’0[1 T 8u2 T 756wt T 819248 T 0(64)]'

1]

...(34)
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4, VALIDITY AND RATE OF CONVERGENCE OF THE FOURIER SERIES
To investigate the convergence of the series (2) the relevant parameter which should
be examined is not just ¢ but the quantity ea*/w? as can be seen from the following.
If we put © = wyt, then (1) can be written as (putting x, = au(t), u(0) = 1)
d?u

Pl u(l + Au?) ...(35)

2
where A= ia .
we
For —1 < A < oo, the solution of (35) is bounded and oscillatory. Let us look at
the convergence of (2) as a solution of (1).

Let us write

W) = T Avunlt). ...(36)

n=0

Now it is clear from (2) that the coeflicients of all powers of A in (36) are bounded
(" | cosz| < 1) for all values of 1. Hence ua(t) is no more singular than un—a(r)
and the expansion is uniformly valid as a consequence.

To find the rate of convergence we calculate the quantities i%’% i From (33) it
o)
is found that
u(t) = a cos wt ..(37)
uy(t) = 31? cos 3wt ...(38)
and so on.

. cos (2n -+~ 1) z! T 39
USlng ‘ T x < (_n - 1) ...( )
we have

Mg d o ...(40
u0!<32“0'094 (40)

and similarly

j%f; < .2357_6- = 0.0663
|y 3921
\7:.? < Gaioos = 0-05%8




1132 R. K. ROYCHOUDHURY

Though the general ratio can be estimated numerically for any n, from the recurrence
relation (9) one can infer roughly that the subsequent ratio will be smaller than the
preceding one from the following fact. From (9) we see that a; will be proportional
to 1/(wd — k*w?) whose magnitude decreases with k.

Hence at least for | A | < 1 the Fourier series (2) as a solution of (1) will be
convergent. To test the convergence for A >> 1 one should expand about a point
A = A, where ), is a positive number and investigate the convergence of the solution
of (1) by introducing a frequency v different from w, (For a quantitative discussions
see Eminhizer et al. 1976).

(Note : A difference in sign in the definition of ¢ and also our series is
basically different from theirs in the sense that we expand each ax in terms of
€ again).

5. DiscussioN AND CONCLUSION

It is shown that a generalised fourier series provides an easy way to solve the
Duffing non-linear oscillator up to any order. Secular terms can be avoided by
choosing w, independent of <, from the beginning which proved subsequently to be
consistent with the equations for expansion parameters. Also, as shown in section 4,
the Fourier series (2) as a solution of (1) is convergent at least for | A | < 1 which
means that | ¢ | << w3/a?. Though the method is applied in this case to Dauffing
non-linear oscillator, it can also be applied to, for example, the Van Der Pol
oscillator

d*u +u:e(1—u2)g%

in which case the calculations will be more lengthy as one has to consider sine terms
in the generalized Fourier series expansion given by (2) [the sine terms appear due
to the term # on the right-hand side of (34)]. However, the power of u still being odd
one considers only odd cosine and sine terms and obtains two sets of equations for
the expansion coefficients and thus solutions can be obtained in a straight forward
manner.
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