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Solution of a two-dimensional heat conduction problem is discussed keeping
one face of the slab at constant temperature and exposing the other face to a
variable temperature distribution or perscribed heat input which are functions
of distance and time. This model assimilates the conditions encountered by
missiles and other space vehicles.

1. INTRODUCTION

An interesting solution to heat conduction equation is obtained for an infinite
slab when one face of the slab is kept at constant temperature and the other is
exposed to a variable temperature distribution or prescribed heat input. This model
was generated by Martin and Payton (1964) and Martin (1966) to approximate the
temperature distribution and the elastic field in bonding materials used in missiles
and space vehicles. They have solved this problem by employing the theory of
complex variables and Fourier transforms when the applied surface temperature
is a Heaviside unit step function. Here, the same model is taken to investigate the
temperature distribution in the slab using a different method when the applied surface
temperature or the prescribed heat input is any continuous or piecewise continuous
function of the distance and time,

The method adopted by Lekhnitskii (1963) and Lur’e (1964) is used to solve the
problem when the applied surface temperature or the prescribed heat input is a
continuous or piecewise continuous function of the distance or time or both. The
method makes use of the expansion of a class of functions f(g) of the complex
variable ¢ which can be written in rational fractions (Mittag-Leffler 1880). The
function f(g) is such that its only singularities in the finite part of the plane are
simple poles a,, a,, a, ..., where |a; | < |a,| < |az).... If by, by, ... are the
residues at these poles and let it be possible to choose a sequence of circles Cn (the
radius of C, being R,) with centre at O, not passing through any poles, such
that | f(¢) | is bounded on Cp, and R, —> oo as m — oo, then the function f(q)
has the following expansion in rational fractions :

5@ = SO + i [0 (2 s) + o (L)
n=1
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where the summation extends over all the poles of f(g). The temperature distribu-
tion is finally obtained, by using the resuit.
t

/0= [ ema, g= 0 (12)
b

where the constant b is chosen to satisfy the initial conditions and ¢ stands for time.

2. STATEMENT OF THE PROBLEM AND SYMBOLIC SOLUTION

Let the infinite slab be of constant finite thickness h. The origin of the
rectangular Cartesian co-ordinate system is taken on the lower face which is taken as the
xz-plane. The temperature 7 in the slab, in this case, is assumed to satisfy the linear

heat conduction equation :

or T pc 0T

of L ef _ o .2

oxz  gy? k gt 21
where p, ¢, k are respectively, the density, specific heat and the thermal conductivity
of the solid. The slab is assumed to be initially at zero temperature. The boundary
conditions in this case are assumed as

T(x,0,¢) = 0, forall x and t 7

...(2.2)
T(x, h, t) = G(x, t), :

where G(x, t) is a continuous or piecewise function of x and .

Defining dimensionless quantities

X' = x/h, y' = y/h, t' = ktjpch? Caa(2.3)
the heat eqn. (2.1) and the thermal boundary conditions take the form :

OT | 0T _oT )

ox'* oy ot '> ..(2.4)

T, 0,1) =0, T(x', 1, ) = G'(x', ).

The primes are omitted in what follows.

Writing p = 6% qg= ?8{ the solution of the heat equation in the operator
form is obtained in the following form (Wadhawan 1972, 1973) ;
invaE—gqg
Tep, 1) = P 0 gy ) 2.5
sin JP“ — 49

3. PARTICULAR CASES

Let the surface temperature G(x,¢) on the face y =1 of the slab be
prescribed as
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G(x,1) = Tye? 18 g(t), —co L X K o0 ..(3.1)

where () is continuous or piecewise continuous function of time and b is any
constant such that Re b > 0.

siny 4p* — ¢

- and using (2.5) and (3.1), we obtain
sin Vp2 — ¢

Writing F(p, q) =

T(x,p,t) = Tee 1= F(— b, q) (1), x > 0

T(x,y, 1) = Tge? 12V F(b, q) (2), x < 0
and since F(p, q) is an even function in p, we have

T(x,y,t) = Toe ® 2L F(b, q) ¢(2), —oc € X K co. ...(3.2)
The function F(b, q) satisfies the conditions of Mittag-Leffler Theorem and F(b, q)
has simple poles at

q=>50 —nr n=1273 ... ...(3.3)

Evaluating the residues at the simple poles and making use of (1.1) and (1.2), the
temperature distribution is obtained as :

T(x, y, 1) = Tpe=b ' [S’" b uay + 2 Inm(— 1)+ sin nry
n=1
t

—ntnz o ()
(b2—-n2m2) (b2-n2w2)rf( Y ]~ -4 .
X{e t[e B(=) d- F— i ]

0
...(3.4)

Example 1 — The function ¢(t) can be prescribed and the integral in (3.4) can
be evaluated. As an example consider the case of sudden heating. We, thus, prescribe
é(t) = H(t), where H(t) is the Heaviside unit step function defined as

H(it)=0,1<0 )

...(3.5
=1,t>0 ) )

The expression for temperature distribution takes the form

T(x,y,1) = Tye?'o! [Sm yb H)

o
n Zm:smnny —we H(t)
+3 et e 01

n=1

...(3.6)
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Example 2 — Take the case when the surface temperature G(x, ?) is pres-
cribed as

G(x, 1) = Tyte-cle=v1 %1, X))

In this case ¢(1) = te~¢t, where ¢ is a constant such that Re ¢ > 0.
The temperature distribution T(x, y, ) is obtained as

sin yb

T(x,y,1) = T, [te~blx!e~ct i h

oo
4 e biml z (— 1)1 2nzy sin nwy
n=1
« 1_ e(bg"ﬂzﬂe)t(l _ (l 1 at) e—~at) - ﬂ_ te=ot
e ‘ " b — nint
...(3.8)

where a = b2 - ¢ — n*z2.

It may be remarked that the initial condition T(x, y, 0) == 0 is satisfied.

4. PRESCRIBED HEAT INPUT

Let us now study the case when the slab is subjected to prescribed heat input at
one face and the other face is kept at zero temperature,

The thermal boundary conditions in this case are :

T(x,0,1) =0, forall x and ¢ )

@.]:.. — _ |>. ...(4.1)
kay—-G(x,t), at y=nh j

where k is the thermal conductivity of the slab and (7(x, 1) is a continuous or piece-
wise continuous function of x and f. As before, initial condition is prescribed as :

T(x,y, 0):0, —OO<X< oo, 0<}'< 1. (42)

The solution of eqn. (2.4), on using the boundary conditions (4.1), can be

written as

siny 4 p¥ — ¢ —
sV, 1) = Gx,t. 43)
Ttx 7. 1) kap: —qgcosdp?—gq G 1) (
The heat input function G(x, f) can be prescribed as follows :
G(x, 1) = Tpe % §(1) ...(4.4)

where 7, and b are constants and () is any function of ¢.
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Writing T = F(p, q) G(x, 1), and using (4.3) and (4.4) we obtain
T(x, y, 1) = T,e =l F(— b, q) Y(t), for x>0
and T(x, y, t) = ﬁe—b l ‘“I'T(b, q) ¢(t), for x <0,
and since F(p, q) is an even function in p, we have
T(x, y, 1) = Toe® =1 F(b, ) §(t), —oo € X € oo.
The function F(b, q) satisfies the conditions of Mittag-Leffler Theorem. The
simple poles of F(b, g) are at
q = b — 2m -+ 1)? (x2/4) ...(4.5)
where m = 0, 1, 2, 3, ...

Evaluating the residues at these poles, and applying (1.1) and (1.2), the tempe-
rature distribution is obtained :

sin yb

T,
T(x’y’t)_—_%e—blml bCOquJ()

oo}

2 z (— Dmsin Cm + 1) (=/2) y {e(b2—(zm+1)2(12/4)>

-~

(B2 —(2mE1)2(7 2 [4))r = ¥(1)
X OI e—(b2—( 1)2(m 2/4)) Iy dr + RV 1)2(752/4)}],

...(4.6)

As an example, consider the case when {(¢) is a unit step function defined in (3.5).

The temperature distribution in this case is given by the expression :

T(x,y, )= 42 evie [ 200 gy 12 f(— gy JRCRED 1D
k bcos b = Cm + 1) (=33

X (e@E-CmEDHTE) 1) 4 o (2:5 ﬁ:)”z (n2/4>}]'

The initial condition is obviously satisfied.
The method adopted in this paper proves to be useful for solution of a number

of thermal problems. It can also be used for other type of boundary conditions e.g.
radiation conditions at the boundary.
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