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The bounds for the solution x of the equations yp? = (x + a;) (x + a,) and
¥2 = x(x + 1) in GF(p) have been discussed.

Chowla and Chowla (1976) made a conjecture that if ay, a,, ..., a, are positive
rational integers, then there exists a solution x of the equation y? = (x 4+ a,)
(x + ay) ... (x + a,) in GF(p). This solution x satisfies the inequality x < B(r) for all
primes p > C(r) where B(r) and C(r) depend only on the a’s and r and not on p.
Stephens (1977) has proved this conjecture by using an indirect approach. In his
note he concludes that B(r) = 2%¢. In this paper, we give a new and direct proof
including some more results when r = 2. Our bound is comparatively very small.

For our purpose, the members of GF(p) are 0,1, 2,3, ...,(p — 1) with the
binary operations as addition modulo p and multiplication modulo p respectively.
The first result in this connection can be formulated in the following theorem :

Theorem 1 — If a; and a, are distinct rational integers > 0 with a, < a,, then
there exists a solution x 2> 0 of the equation y? = (x + a;) (x + a@,) in GF(p) satis-
fying the inequality x < g, for all p > 2a,.

ProoF : Using Legendre’s symbol we conclude that x = 0 is a solution of the
equation if (a,a,/p) = 1.

If (2a,(a;, + a,)/p) = 1, then it is obvious that x = qa, is a solution.

Under the hypothesis (2a,(a, + a,)/p) = (a,a,{p) = —1, we obtain on multi-
plication (2a%a,(a; + a,)/p) = 1 which implies (2a,(a, + a,)/p) = 1 yielding x =a,
as a solution of the given equation. This completes the proof.

It can be easily inferred on the lines of Chowla and Chowla (1976) that the solu-
tion x = g, in Theorem 1 would be attained for infinitely many primes. The actual
computation of primes for this purpose would require the solution to satisfy certain
equations simultaneously.

Illustration — As an illustration, we consider the equation y* = (x + 1) (x -+ 5).
We search for primes p which do not admit any solution x < 5. This means that
the primes p under this hypothesis must satisfy the following conditions :
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(2/p)y = (3/p) = (Slp) = —1; (Tlp) =1.

It is easy to see that the first such prime p which has x = § as the least solution
of the equation is 53 and the next successive prime is 197.

Strong Condition — If we make the condition strong, as stated in the conjecture,
and require that the solution x referred to in Theorem 1 above should be > 0, then
we formulate the problem equivalently in the following theorem.

Theorem 2 — If g and ¢ are rational integers > 0, then there exists a solution
x > 0 of the equation y* = (x + @) (x + a + t) in GF(p) which satisfies the
inequality x < (2n 4 1) ¢ — a for all primes p > (2n + 2) t where n = [a/t] + 1.
Here [a/t] denotes the largest integer that does not exceed the rational number ajt.

PrOOF : By archimedean property, there exists a least positive integer n such
that nt > a. Clearly this 7 is same as defined in the statement of Theorem 2. Now
we complete the proof on the lines of Theorem 1.

If (n(n + 1)/p) = 1, then nt — a is a solution of
V=x+ax+att) (D

If (n(n 4+ 1)/p) = — 1, then we have two cases for discussion :

Case 1: (1)=——1,(n+1)=1
r p

(i) If@n -+ 2)/p = 1, then using (n + 1)/p = 1 we get
((471—5—2)("-{— 1) ) -1

P
or ((2n+1)(2n+2)):1.
p
This yields x = (2n + 1) t — a as a solution of (1).
(i) If (4n 4~ 2)/p = -1, then using (n/p) = —1 we obtain
((4n -+ 2)n) =1

P
or (&@Lﬂ) -1

p

This leads to 2nt — a as a solution of (1).

Case 2 - (1)= 1, (”+ l)=—1
P ?

By repeating the arguments as in Case 1, we conclude that by using
(4n 4 2)[p=1, we obtain 2nt — a as a solution of (1) where as (4n + 2)/p = —1
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leads to (2n + 1)t — a as a solution of (1). This takes care of all possibilities and
the proof is complete.

Corollary — 1f t > 0, there exists a solution x > 0 in GF(p) of y* = x(x + 1)
which satisfies the inequality x < 3¢ for all primes p > 4¢.

Proor : 1t is obvious from Theorem 2 above.

By applying the result of Theorem 2 (Singh 1970) we get another bound for the
solution x of the equation y* = x(x + f)in GF(p). This bound for x satisfies

x << (tgl)dforallt>7.

However, the integer 7 mentioned above can be replaced by 5 by observing that
* = x(x 4 6) has a solution x = 2 and y?> = x(x + 3) is satisfied by x = 4.

Thus we conclude that for ¢ > 5, a solution x of y* = x(x -~ ¢) satisfies

—_ \2
< (l 5 1) . If t < 5, then by simple computation it follows that y? = x(x -~ 1)

has a solution x < B(f) where

t = 1 2 3 4
B() = 3 4 1 6

Thus by combining the results of this discussion with the result of the above
corollary, we have proved the following theorem :

Theorem 3 — If t is a rational integer > 0, then a solution x > 0 of
¥® = x(x 4+ t) in GF(p) satisfies the inequality x < B(¢) for all primes p > B(r) + ¢
where

B(t) = max {6, (t—;—l)ﬂ} when < 13

= 3¢ for r> 13

Remark : The values B(13) and B(100) by our result are 36 and 300 respec-
tively where as the conclusion derived in Stephens (1977)gives B(13) = 22¢ and
B(100) = 2300,
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