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A NOTE ON THE UNSTEADY FLOW OF VISCOELASTIC FLUIDS
THROUGH TUBES WITH CROSS-SECTION AS A SECTOR OF A
CIRCLE AND AS A SECTOR OF COAXIAL CIRCULAR DUCTS
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In this note, a study of the unsteady flow of viscoelastic fluids through tubes
with cross-section as a sector of a circle and as a sector of coaxial circular ducts
has been made, the main aim being to determine whether a viscoelastic fluid
will behave in a similar mapner or in a different manner if the flows are taken
through different geometries.

1. INTRODUCTION

In viscometric flows, start-up problems are important (Huilgol 1975). The
transitional velocity field as well as the final velocity {ield are of practical interest in
the analysis of this flow. Thomas and Walters (1963) show that presence of elasticity
in the liquid increases the rate of discharge of liquid in a curved pipe under a
pressure gradient. In the case of stability of an elastico-viscous liquid film flowing
down an inclined plane Lai (1967) shows that presence of elasticity in the liquid
destabilizes the flow. Barnes and Walters (1969) show that the flow rate of liquid
through straight and curved pipes is significantly enhanced by the presence of
elasticity. In the problem of unsteady motion of a sphere in an elastico-viscous
liquid, King and Waters (1972) show that maximum velocity is increased by increasing
the elasticity of the liquid.

Now it is of interest to determine whether the viscoelastic fluids will behave in
a similar fashion if the flows with different geometries are considered. In the present
paper, we study the flow of viscoelastic fluids through geometries other than those
studied by the previous authors and determine whether similar or different pheno-
mena occur in our case. We take the flow through tubes with cross-section as a
sector of a circle and as a sector of coaxial circular ducts. The rheological behaviour
of the viscoelastic fluids are governed by the eight constant model (Oldroyd 1958).

2. EqQuaTtiOons

Part A
We consider a slow shearing motion through a tube with sector of a circle as a
cross-section which is bounded by the circle r = g and two radii 8§ = + «. We assume
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that the flow is to be taken only along the length of the tube, so that the flow equation
in the axial direction reduces to

(1+A1—§§)§;—”=k(1 + 4 gt—)f(t)Jrv(l +"2’aa“:)
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where 2, A;, no and p have their usual meanings and v = /¢ and f(¢), is any
function of time. Here we have taken — :,_ g% = kf(t) where k is some constant.

The equation of continuity takes the form

g;ﬁ =0 ..(2.2)
The boundary conditions are
(i) w(r 0,t)=0 when r=0a,1> 0, —a L0« ...(2.3)
(i) w(r,0,¢) =0 when 8 = 4o, 1> 0,0 r<a ...(2.4)
(ii)) w(r,0,#) =0 when 1t =0,0<r< g and — eI .(2.5)

The solution of the flow eqn. (2.1) under boundary conditions (2.3) to (2.5)
using the integral transform technique has been found out. We consider the flow
under three different categories of pressure gradient i.e. (i) exponential pressure
gradient, (i) harmonically oscillating pressure gradient (iii) constant pressure
gradient.

Part B

In this part, we consider the unsteady flow of viscoelastic fluids through a tube
with a sector of coaxial circular ducts as cross-section. Let a, b be the radii of the
cross-section, where a > b.

Equation (2.1) still holds but we have to inegrate it under the following boundary
conditions

G w(r,0,1)=0 when r=a,t> 0, —«a L0« ...(2.6)
(i) w(r,6,f) =0 when r=56,1>0, —a 0« 2.7
(i) w(r,8,t) =0 when 8 = + o, >0, r<a ...(2.8)
@(iv) w(r,8,) =0 when t =0, r<a and —a« << I ...(2.9)

The solution of eqn. (2.1) under the boundary conditions (2.6) to (2.9) using
the integral transform technique (Sneddon 1951, 1974) has been obtained in the
three particular cases of the pressure gradient as explained above in Part A.
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3. NUMERICAL RESULTS

The results obtained in Part A and Part B are shown graphically (Figs. 1 to 4
for Part A and Figs. 5 and 6 for Part B).
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Fig. 2. Velocity profiles with constant pressure gradient plotted against £ (r = 0.7, 0 = =/12, v = 60).
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Fic. 3. Velocity under constant pressure gradient plotted against r for various values of v (8 = =/12,
t = 0.005, 1, = 0.105, 3, = 0.0292),
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FiG. 4. Velocity under constant pressure gradient plotted against r for various values of 2, (3,=0.105,
v =375, 6 = =12, t = 0.005).
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Fi1g. 5. Velocity under constant pressure

gradient plotted against r for various values of
2 (0 = /12, 1 = 0.012, v = 60).
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Fi1G. 6. Velocity of viscoelastic fluid under constant pressure gradient plotted against r for different
values of ¢ (8 = =/12, %; = 0.105. %, = 0.0292, v = 60).

4. CONCLUSIONS

As with other geometries, in our problem also, we observe that:

(i) the elasticity of the fluid increases the velocity of the flow and hence
destabilizes it;

(i) in the beginning when the flow starts, the effect of decrease in frequency
of oscillations increases the maximum amplitude but later on, decrease in
frequency causes decrease in amplitude;

(iii) on account of elastico-viscous friction, boundary layers are formed and
their width increases with the increase in elastic force in the laminar
region,

Further we also find that:

(i) due to elasticity, parabolic flow is achieved earlier in comparison with the
flow in the case of viscous force only;

(i) in the case of non-oscillatory behaviour of the velocity, the time for
reaching the terminal velocity increases as elasticity decreases.

A CKNOWLEDGEMENT

The authors are thankful to the referee for his valuable suggestions for the
improvement of the paper.



A NOTE ON THE UNSTEADY FLOW OF VISCOELASTIC FLUIDS THROUGH TUBES 1283

REFERENCES

Barnes, H. A., and Walters, K. (1969). On the flow of viscous and elastico-viscous liquids
through straight and curved pipes. Proc. R. Soc., A 314, 85-109.

Huilgol, R. R. (1975). Continuum Mechanics of Viscoelastic Liquids. Hindustan Publishing
Corp., Delhi.

King, M. J., and Waters, N. D. (1972). The unsteady motion of a sphere in an elastico-viscous
liquid. J. Phys. D: Appl. Phys.,5, 141-50.

Lai, Wei (1967). Stability of am elastico-viscous liquid film flowing down an inclined plane. Phys,
Fluids, 10, 844-47.

Oldroyd, J. G. (1958). Non-Newtonian effects in steady motion of some idealized elastico-viscous
liquids. Proc. R. Soc., A 245, 278-97.

Sneddon, I. N. (1951). Fourier Transform. McGraw-Hill Book Co., Inc., New York.

————— (1974). The Use of Integral Transform. Tata-McGraw-Hill, New Delhi.

Thomas, R. H., and Walters, K. (1963). On the flow of an elastico-viscous liquid in a curved pipe
under a pressure gradient. J. Fluid Mech., 16, 228-42.



