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Let & denote a family of self-mappings over a Banach space X. Two
members f and g of & are said to be asymptotically commutative if

Lim (fig(x) — gfi(x)) = Oforall x in X. TFis called asymptotically commu-
i+

tative iff any two members of &F are so. With this concept of asymptotic
commutativity as introduced by us in this paper we have proved simultaneous
fixed point theorems for &. If members of & are all linear, then our theorem
generalizes well-known Markov-Kakutani Theorem. In case of members of &
being nonlinear our results rest on two settings; one over a compact convex
subset, and other over a closed convex subset of X. In both the cases our
results include those already known for a commuting family . Examples
have been cited to show the extent of generalization of theory of fixed points
over a non-commuting family &.

§1. Itis known that Markov and Kakutani (Dunford and Schwartz 1958) have
proved common fixed point theorem for a family of continuous linear mappings.
Later on Marr (1963) has dealt with nonlinear mappings and has established common
fixed point theorem for a family of nonexpansive self-mappings (i.e. mappings T for
which | T(x) — T(M < | x — y ], ¥ x,y) over a compact convex subset of a
Banach space. In a noncompact setting Belluce and Kirk (1966) have proved
common fixed point theorems for a finite family of nonexpansive mappings by
introducing a concept known as ‘normal structure’ {[for the definition of ‘normal
structure’, see Kirk (1965)] in the space. Subsequently they have extended their
results to arbitrary family of nonexpansive mappings by strengthening the hypothesis
of normal structure to ‘complete normal structure’ [for the definition see Belluce and
Kirk (1967)]. Also Kasahara (1966) has proved a common fixed point theorem for a
family of nonexpansive mappings over a uniformly convex normed linear space. In
all the above-mentioned works authors have worked always with a commuting family
of mappings. Our aim in this paper is to establish common fixed point theorems for
a noncommuting family of mappings. For doing so we have introduced a concept to
be called as ‘asymptotic commutativity’ and with its aid have proved common fixed
point theorems. In §2 we have established common fixed point theorems for a family
of linear continuous mappings which gives Markov-Kakutani Theorem (Dunford and
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Schwartz 1958) as a corollary. In §3 we have dealt with a family of nonlinear
mappings and have proved simultaneous fixed point theorems which generalise those
for commuting family of nonlinear mappings as referred to above. Examples have
been given in support of theorems proved in this paper.

§2. We start with a definition.

Definition 2.1 — Let (X, UJ) be a Hausdorff uniform space andf, g : X - X be
two mappings. f and g are said to be pointwise asymptotically commutative if for
each x € X, the sequences {(fig(x), gfi(x))} and {(gif(x), fgi(x))} are eventually in
every u € J.

We now prove the following theorem.

Theorem 2.1 — Let H be a nonempty compact convex subset of a Hausdorff
linear topological space X, and & be a family of continuous and linear self-mappings
over H, any two members of which are pointwise asymptotically commutative. Then
& possesses a common fixed point.

Proor : Using Zorn’s Lemma, we get a nonempty compact convex subset X of
H which is minimal with respect to being invariant under each member of . Take
x € K. Since Kis compact and T(K) C K, let the sequence {T™i(x)} be a convergent
subsequence of {T(x)} in K. We construct

K, = K({n}, T) = {z € K ; Lim T"(§) = z, for some £ € K}.
i

Clearly K, % 4. Since T'is linear and continuous, if follows that K, is convex.

Next we show that K remains invariant under each member of &. Let S € &.

If z € K|, then for some £ € K, S(z) = S(Lim T"(&) = Lim ST™(£) (by continuity
i i

of §) = Li‘m T":S() (by asymptotic commutativity of Sand T). Since S¢) € K,
1

we have S(z) € K({n}, T) = K;. Since each member of & is continuous,
it follows that K({n;}, T) (bar denoting the closure of a set) is a compact convex
subset of K that remains invariant under each member of &. By minimality of K we

have K = K({n}, T). Let fand g be two members of F. By the argument given

above there is a subsequence {m;} of {m} such that K({m:}, f) = K. Let x € K({mi}, f).
Then x = Lim f™i(§) for some £ € K. Using continuity and pointwise asymptotic
1

cummutativity we have,

8fx) = &f (Lim (%)) = g (Lim f"+1(¢)) = Lim gfm+1(5)
= Lim f7#1g(6) = f (Lim f™45(@) = / (Lim g/ ()
= o Lim f(®) = fe).



ON ASYMPTOTIC COMMUTATIVITY AND COMMON FIXED POINT THEOREMS 1329

This shows that f and g commute over K({m.}, f) and hence f and g commute over

K({n},f) = K. Thus & is commutative over K and an application of Markov-
Kakutani Theorem (Dunford and Schwartz 1958) completes the proof.

Corollary 2.1 [Markov-Kakutani Theorem (Dunford and Schwartz 1958)] — Let
K be a nonempty compact convex subset of a Hausdorff linear topological space X
and & be a commutative family of continuous linear self-mappings over K. Then &
possesses a common fixed point.

§3. In this section we shall prove simultaneous fixed point theorem for non-
linear mappings. Before we start, we give some definitions.

Definition 3.1 — Let (X, d) be a metric space and f, g : X— X be two mappings.
S and g are said to be uniformly asymptotically commutative if d(fg(x), gfi(x)) - 0
and d(g¥f(x), fg'(x)) — O uniformly over X as i - oo.

Definition 3.2 — A mapping f : X— X is said to be asymptotically nonexpansive
if for any x, y € X, d(fi(x), fi(»)) < Kid(x, ) where K; {1 as i — oo,

Definition 3.3 — A bounded closed convex set K in 2 Banach space X is said to
possess normal structure if for any closed convex subset H of K containing more than

one point, there exists x € H such that su;[)[ Ilx —yl < &H), 3(H) denotes
ye

diameter of H. Before we prove Theorem 3.1 we need the following Lemma.

Lemma 3.1 — Let C be a nonempty closed subset of a complete metric space X
and f, g : C— C be continuous mappings which are uniformly asymptotically
commutative, If further

d(f'g'(x), (fg)'(x)) ~ 0 and d(g'f*(x), (&f)(x)) > O (A)

uniformly over C as i —» oo, then

() F(fe) = {x € C;fe(x) = x} = Flgf) = {x € C; gf(x) = x}

(ii) f: F(fg) > F(fg) and g : F(fg) ~> F(fg)

(iii) fig(x) = gfi(x) and g'f(x) = fgi(x)

(iv) fig'(x) = (fg)(x) and g/ (x) = (&f)'(x) J
for all x € F(fg).

Proor : (i) Let x € F(fg). So, by (A), fig(x) - x uniformly. Hence
gf(figi(x)) - gf(x) uniformly i.e. gf*+1gi(x) — gf(x) uniformly. Thus by asymptotic
commutativity of f and g, we have fitig gi(x) —» gf(x) uniformly. On the other-

hand, figi(x) - x and hence gf(x) = x = f3(x). This shows that F(fg) C F(gf).
Similarly F(gf) C F(fg). This proves relation (i).
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(ii) For x € F(fg), we have from (i), f2(x) = gf(x) = x ; so,
gfe(x) = g2 f(x) = g(x); i.e. g(x) € F(gf) = F(fz).
Similarly f{x) € F(fg). This proves (ii).
(ii) For x € F(fg), gif(x) = g'gf(x) = gi-Yfe(x) = g(x) = gi-?g(x)
= g e(a(x)) = g~°fg%(x).
Repeating the process we have
‘ gf(x) = fg(x).
Similarly, fig(x) = gfi(x).
(iv) The relation fgi(x) = (f2)i(x) is true for i = 1.
Suppose it is true for i = i, — 1, then
(fg)io(x) = (f2) o (fg)(x) = (fg)io}(x) = fio—lgio—i(x)
= fio—lgio—lgf(x) = fio-Igiof(x) = fio—Ifgio(x) = fiogio(x).
This completes the induction. Similarly (gf)i(x) = gifi(x).

Theorem 3.1 — Let K be a nonempty closed convex weakly compact subset of a
Banach space X satisfying normal structure. Let G = (fi, fs, ..., fs) be a finite
family of nonexpansive mappings, any two members of which are uniformly asympto-
tically commutative, satisfying the following condition. For any sub-family (f, g, ..., #)
of &,

(fg...n(x)— (figt...i)(x)=> 0 ...(B)
uniformly over K.
Then & has a common fixed point.

ProoF : Using Zorn’s Lemma, we find a minimal nonempty closed, convex
subset M of K which remains invariant under each f € &. Let F denote the fixed
point set of (f, f; ... fu). Clearly F # ¢ by Theorem 3 of Kirk (1965). For a
cyclic permutation {fi1y, fite, ..., fa, fis ooes i} OF {f1s f2s .., fu} We show the followings:

Sl Ui o fofy e ) ) = iz i fafy o SIS, ) >0 L(3D)
uniformly over K as j — oo
and

flo Gin i fo i 91 (8) = (finrfise o oSy o P (D=0 . (32)

uniformly over K as j —+ oo,
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We establish (3.1) by method of finite induction. Suppose (3.1) is true for any m
functions of &F, 1 < m < n. Take (m 4 1) number of functions in &F, and call them
f1 fas oovs frnin. Now for m functions we have

[l G oo it o o S 0) = fos o St fy o i (Fliy (B > 0
(3.0)

uniformly over K as j - oo,
By asymptotic commutativity of fi.1 and f;,2, we also have
Il fisa(fss oo fmia fo oo SR — frsn f1 ) (foss e fusafr o Ji(X)) = O
...(3.1)
uniformly over X as j— oo.

Since f:,2 is nonexpansive, we have from (3.1),
Vfie £y s oo gt fy o i) = fise fist oo fomnr Sy oo fif g ()
NS, s o foust fy e Sd3) = frss oo fusa fo o fif L () 11> O

...(3.1ii)
uniformly as j — oo.
Hence (3.1) follows from (3.ii) and (3.iii).
To prove (3.2) we have by (B)
(fisz oo fafy e SV () —~ (fLoy o fof) o fD(E) = 0 o (3.0Y)
uniformly as j ~>oo
and
(fsrfisz oo fafo i V) = fos S f1 () > 0 (3.V)
uniformly as j — oo.
Since f:+1 is nonexpansive, we have from (3.iv)
L Gt Sy o PPV @) = [l SifL o fL V>0 L (3vi)

uniformly as j — oo,
Thus from (3.v) and (3.vi) relation (3.2) is immediate.

Proceeding similarly as above we also have

(figz oo fo fy o [ fin (%) — firlfive oo fofy o Y (x)—> 0 ...(3.3)

uniformly over K as j — oo.
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ise oo fafo o SV S0 ) = (frsz e o fo o it ()= 0 ..(34)
uniformly over K as j — oo,
Now by Lemma 2.1, we have for any x € F,

x=fifo D@ =Lofs i Sufi(¥) = ... =finfiz . fifo o fi(X)
...(3.vii)

This shows that

Jix) = flfira .o fofy o fil(x)) = (i fosa o fufy . fion) fi(X)

i.e. fi(x) is a fixed point of fifiy1 ... fufy ... fisx and therefore arguing similarly as
above, fi(x) is a fixed point of (f; f, ... fa). Thus fi(F) C F, for 1 < i < m. Further
from relation (3.vii), it follows that fi(F) = F, 1 < i< n. The rest of the proof is a
copy of arguments given by Belluce and Kirk (1966, Theorem 3) where by using
normal structure hypothesis F has been shown to be a single-pointic set. Thus & has
a common fixed point.

Corollary 3.1 (Theorem 3 of Belluce and Kirk 1966) — Suppose X is a
nonempty weakly compact, convex subset of a Banach space B and suppose that X
has normal structure. If & is a finite family of commuting nonexpansive mappings
of X into itself then there is an x € X such that f(x) = x for each f € F.

In case & contains an infinite number of members having properties as stated in
Theorem 3.1 we have the following theorem whose proof is completed in two steps.
Initially we apply Theorem 3.1 to obtain a fixed point for a finite sub-family of &,
and then we proceed exactly in the same manner as in the proof of Theorem of
Belluce and Kirk (1967) to arrive at the desired conclusion.

Theorem 3.2 — Let K be a nonempty weakly compact convex subset of a
Banach space X and suppose K has complete normal structure. Let &F be an infinite
family of nonexpansive self-mappings over K any two members of which are uniformly
asymptotically commutative such that for any finite sub-family = of &, condition (B)
of Theorem 3.1 is satisfied. Then & possesses a common fixed point.

However in a uniformly convex Banach space we have the following theorem.

Theorem 3.3 — Let K be a nonempty bounded closed convex subset of a
uniformly convex Banach space X and & be a family of asymptotically nonexpansive
mappings of K into itself such that any two members of &F are pointwise asymptoti-
cally commutative, then & has a common fixed point.

Proor : Letf € &, and Fy denote the set of fixed points of f. Since X is
uniformly convex and f is asymptotically nonexpansive, F, is nonempty bounded
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closed and convex (see Goebel and Kirk (1972), and therefore weakly compact. Now
following the arguments used in the proof of Theorem 1 of Kasahara (1966) we show
that F = N Fr %= ¢. Thus F is the desired common fixed point set.

feg

Over a compact setting of the domain space we have the following theorem,

Theorem 3.4 — Let X be a nonempty closed convex bounded subset of a Banach
space B; let M be a compact subset of X. Let & be a nonempty family of non-
expansive mappings any two members of which are pointwise asymptotically commu-

tative. Further if for some f; € F and foreachx € X, M N {f;'(x)} # ¢ then &F

has a common fixed point.

ProoF : Applying standard argument of Zorn’s Lemma suppose X* is a
minimal nonempty closed convex subset of X which remains invariant under each
S € &F. Now f, satisfies all conditions of the Theorem of Kirk (1965) over X, and
application of which shows that the fixed point set /7 of f; is a nonempty subset of
M* = X* N M. Since any two members of & are pointwise asymptotically commu-
tative f(H) C H foreachf € &. Let H* be a subset of H which is minimal with
respect to being nonempty closed and remaining invariant under each f € &. Take

fo € &. Since H* is compact {fg(H*)} is a decreasing sequence of compact sets and

o0 oo
hence ml{f:(H*)} #¢. Let Ly, = N {f (H*)}. We show thata point x € Ly,
=1

n=
iff there is § = (x) in H* and a subsequence (depending on x) {f;'(£)} of {f, (£)}
such that x = Liim f3¥(€). Letx € Ly, Then for each n, there is & € H* such
that x =f: (¢s). Since H* is compact, there is a convergent subsequence {&n;} of
{€s} converging to, say £ € H*. Since f, is nonexpansive {fg"(i)} converges to
x. Conversely, let for some & € H*, {f(£)} converges to x. Then
for a fixed m, f'(¥) € fy(H*) for sufficiently large values of i. Since f]'(H*)

is closed, we have Lim f,*(£) = x € f;(H*). This being true for every m, we have
i

x € Lys,. Nextwe show that L,, remains invariant under each f € . Takex € Ly,.

Suppose x = Limf;‘(ﬁ) for some ¥ € H*. Since f is continuous, we have
i

fx)=Limff /() = Lim f: ‘(f(£)) by pointwise asymptotic commutativity of f and f,.
H
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Since f(E) € H* we have f(x) € Ly,. Thus f(Ls) C Ly, for all f € 4. Further
L, is closed and therefore the minimality of H* we have L, = H*. Hence
fo(H*) = H*. Since f, is arbitrary we have f(H*) = H* forallf € &. Therest of
the proof is similar to the proof as in Theorem 1 of Belluce and Kirk (1966).

Corollary 3.2 (Theorem 1 of Belluce and Kirk 1966) — Let X be a nonempty,
bounded, closed, convex subset of a Banach space. Let M be a compact subset of X.
Let & be a nonempty commutative family of nonexpansive self-mappings over K with
the property that for some f;, € & and for each x € X, the closure of the set
{f*x) ;n =1, 2, ...} contains a point of M. Then there is a point x € M such
that f(x) = x for each f € <.

Corollary 3.3 (Theorem of Marr 1963) — Let B be a Banach space and let X be
a nonempty compact subset of B. If & is a nonempty commutative family of
nonexpansive mappings of X into itself, then the family & has a common fixed
point in X.

Example 3.1 given below shows that there is a non-commuting family of
mappings which is asymptotically commuting and that it illustrates situation in which
Theorem 3.1 and Theorem 3.4 apply.

Example 3.1 — Let X be the space of reals with usual Euclidean norm and
K =1, 2] be a subset of X. Define f, g: K — K as follows:

f(x):l—{—x;l, forall x € K
x — 1)2

and g(x) =1 +( ), for all x € K.

¢ % 1 1
Then clearly | fig(x) — gfi(x) | = (x — 1)? > T a7 0
uniformly over K as i - oo, and

il (i | (2 — D 1 1

| fg'(x) (fg) ) | _21+2+--~+2i"1 X [21—1 22t - 22(1+2+...+2i—1)] -0

uniformly over K as i — oo.

Similarly | gf(x) — fei(x) | > 0 and | gifi(x) — (gf)i(x) | — O
uniformly over K as i — oo,
(x — 1)

However, fg(x) =1 + “——= #gf(x) = 1 +

(x — 1)2
23

2¢

for all x. Further f and g are nonexpansive.
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Finally Example 3.2 and Example 3.3 belows show how far the hypothesis of
Theorems are independent.

Example 3.2 — Let X = {(r,0); 0 < r < 1,0 06  =/2}. Then X is closed
convex subset of E? with the usual Euclidean norm || (x,») || = 4 x* + )%, (x,y) € E2.
Define f, g : X — X as follows:

_ r ]
fir, 8) = (2+sine’6) I
FLo< r<L0g8 g x/2
and (r,8) ={r i _-n:/2—6 |
g’ » 2 J

Then it can be easily verified that f and g are nonexpansive and
(@ fig(r,0) — gf'(r,6) >0 ]
(by figi(r, ) — (fe)i(r,0) >0 ‘} , uniformly over X as i - oo
© 8700~ @00

whereas, gif(r, 0) — fgi(r, 8) —/— 0 everywhere in X.

Example 3.3 — Let X = {0, 1, n‘—nl; n=1,2,.. } Then X is a closed

subset in the space of reals,

Define f, g : X = X by the rule:

f( ; )=n+1 n=0,12, ..

n+1 n-+ 2’
Sy =1
n n

80 =1, g = 0 and g5 ) = i ¥ n > 1.
Then f and g are nonexpansive and

Sigx) — gfi(x) >0
uniformly over X as i - «o. However

gf(0) — fg'(0) -/~ 0
and £igi(0) — (fg)'(0) /- O as i—> co.
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