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ON SOME DUAL INTEGRAL EQUATIONS
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Three different sets of dual integral equations, involving Bessel function of
order one, arising in some special axi-symmetric problems of elasticity
theory and viscous flow theory are handled for their solutions, either in
closed form or in terms of Fredholm integral equations of the second kind.
The final results are in full agreement with the ones obtained through the
Green’s function technique, used previously, for solving the mixed boundary
value problems considered here.

1. INTRODUCTION

A number of workers have studied mixed boundary value problems, in the
axisymmetric case, arising in Elasticity theory associated with punches and cracksl—3
and in the theory of viscous flows induced by steady rotation or harmonic oscillation
of a circular disc?"8, Of all possible methods of solution of these axi-symmetric pro-
blems, the method of reduction to a set of dual integral equationsl, appears to be the
most natural and straightforward method of attack. But, as pointed out by Shail3'5
and demonstrated by Stallybrass®, certain dual integral equations are not amenable to
their solution straightaway. It is for this difficulty that Stallybrass® and Shail356
have utilised an integral representation of the principal unknown potential by employ-
ing a Green’s function technique devised specially for the purpose.

We have shown in the present paper that by a suitable use of the Bessel equa-
tion itself, it is possible to handle all the problems treated previously via the dual
integral equations only and that the details of the Green’s function technique can be

- . [+
avoided, if we assume throughout the analysis that | p(s) J1 (sr)ds =  lim 0}) e«
° «e—>00
p (s) J1 (sr) ds, wherever such integrals occur. It must be emphasised that the Green’s

function technique is better-suited to problems associated with more general axi-

symmetric bodies than the circular disc for which the dual integral equations are the
superior ones.

2. Toe DuaL INTEGRAL EQUATIONS AND THEIR SOLUTIONS
Problem 1

The dual integral equations

::j‘?s2 A N1@sr)ds= ~6(r),0<r <a (1)
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0
fsA () JL(sr)ds =0, r>a ..(2)
0

arise (see Erguven?) in the study of a static penny-shaped crack problem in a homoge-
neous isotropic elastic solid under torsion. Here o (r) represents the distribution of
the shear-stress on the face of the crack and it is required that the displacement field

given by the integral on the left of eqn. (1b) is zero at r = q, for the purpose of
continuity.

The method of solution of the equations (1) and (2) is as described below, and
is different from the method described in Sneddon’s bookl.

We set
:l?sA ()Ji(sr)ds = f(r),0 < r < a. ..(3)

Then, using the well-known Hankel’s inversion formula to the eqns. (2) and (3), we
obtain

A(s) = oj‘ A 41 (As) . D)

The equations (1) and (4) finally give rise to thc following integral equation for the
unknown function f(A) :

OZ 52 Jy (sr) ds;} AfQANL(SA)dA= —a(nN,0<r < a) ...(5)

after interchanging the orders of integration, assuming that such an interchange is
permissible here and even later on, for the other two problems treated in this paper.

If we next use the idea that the Bessel function Ji (sr) satisfies the ordinary
differential equation

d2 1 d 1
(524- i ;2—+s2)11(sr)=0 «.(6)

we observe that under certain special circumstances (as applicable to the crack pro-
blem mentioned above), we can rewrite the integral equation (5) in the form

2
(r %z“d—dr—‘)"<r>=r2o(r),<0<r<a) o)
with

u(r) = ;’le (sr) dsz AL Q)T s) dA. (8
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we then solve the ODE (7) by the standard method of variation of parameters and
obtain the general solution in the form

0 r r
C
u=cgr+’i +’7So(t)dz—2iftza(z)dz . (9)

where 6(1) and cg are arbitrary constants to be determined from the physical consi-

derations of the problem.

Of these two arbitrary constants, the constant &

, must be chosen to be zero in

order that u is finite at r = 0, and the constant 0(1) will be settled a little later on.

Next, interchanging the orders of integration in eqn. (9), and using the result
(see Shail5),

[ore) min(r;1) 2 4
v2 dy
| ! Jl (SI') Jl (SA) dS = AT J [(72 . V2) (/\2 — v2)]1/2 . ".(10)
We obtain
r a
2 v2 dv A) dA
2t hm | A S = 0<r<a. . (1D)

Using the Abel’s inversion formulael, repeatedly to equation (11), we find that

"f 1) da [ d

oz = | gt ONe? — )12 dy,
v 0
and, hence,
a d
Id— (tu (1)) dt AJ’(Z:')"'
e R CE T S g emm La2)
where
(mu (m))
1{dm
n(t) = ] Im dm. (13)

Equations (12) and (13) along with eqn. (9) completely solve the mtegral equation
(5), if the constant c1 is determined. In order to determine the constant c°

1 » We need
to use the result (12) and the observation that f (a) =

0, arising out of the physical
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requirement involving the continuity of f(r) atr = a, as argued earlier. We then
obtain the equation that
a d d
— t
[ e @
0

dt "~ _ g (14
(02 _ 12)172

and this, together with eqn. (9) serves as the determining equation for the constant

0

L‘].

As a particular case, if we take o (r) = cr, where ¢ is a known constant, as
considered by Erguvenl?, we easily find that

0 c
u(r) = ¢, + 8—r1 ...(15)

and eqn. (14) gives that
¢ =~ ¢ ...(16)
so that eqn. (12) decides that

—;:C a2 — ALz ..(17)

f@ =
which agrees with the result of Erguven!o,
Problem 2

The following dual integral equations arise in the study of the dynamic Reissner-
Sagoci problem considered by Shail? :

;fc(a) Ty (Ep) dE = ﬁg,(o <p<1) .18y
?(sz + PUB2 C () 1y (B0) dE =0, (p > 1), .(19)

In order to derive the above dual equations, we have used the representation of the
solution of the mixed boundary value problem of Shail3, in the form :

v(P2) = C@ e B S 1 o) g, 2o} - (20)

which must satisfy the p.d.e. and the boundary conditions as given by

27y 1 &z v 223 P2

p2 —ﬁ-a—f-r Fz—'-f- W—T=0;Z>O «(21)
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and

N af
7 ? ( p )

. on z — O. ey
G o_0,p>1)

ot
Shail® has used, like Stallybrass?, a special Green’s function technique to solve the
mixed problems (21) and (22), as no direct method of attack exists to solve the dual
eqns. (18) and (19). We present an approach, which is similar to the one employed
for Problem 1 above, utilizing the Bessel equation (6), and show that for large values
of p, the solution of the dual equations (18) and (19) can be determined exactly in the
same manner as described by Shail3.

We set
co-(L+e) e (23

and rewrite eqns. (18) and (19) in the form

J(;ﬁ + 5)1'2 D (§) J1 (Ep)dE= % LO<p <) (23)
0

and
| (F+2)p@nena=0p>n. (25)

0

Equation (25) can be recast in the form

2 1d 1 2\ [
(3% - ) ronema=oesy
0
...{26)
after using the Bessel equation (6), and this, on integration gives that
(J) D (§) J1 (8P) d& = Co K1 (pPIP), (P > 1) -(27)

after neglecting the part of the solution involving 11 (pp/B), where 1 (x) and Ky (x)
are the mf)dxﬁed Bessel functions of the first order and Cy is an arbitrary constant to
be determined by using order physico-mathematical consideration.

We thus find that the dual equations (24) and (25) can be recast into the form
(24) and (27) respectively.
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If we then set
o0
(f) (p2IB% + EV2 D (§) J1 (EP)dE =g (P), (P > 1) ..(28)
and use the Hankel inversion formula to eqns. (24) and (28), we obtain that

(p2IB2 + EJL2 D () = %

Jo (8 + E j Ag (A) J1 (E) dA . (29)
1

(See Gradshteyn and Ryzhik1l, p. 683) and that eqn. (27) finally gives rise to the
following integral equation for the unknown function g (P) :

l Ag) M(P, Q) dx = Co Ky (1;\") — %J’ (512.255)[)*_127&(_25;32 d,
1 0
() ...(30)
where
s
MP.A) = jmh &P J1 (E1) dE. (D)
0

The integral eqation (30) is similar to the one obtained by Shail3, and can be at-
tacked for solution, for large p, by a repeated use of the Abel’s inversion formulae as

described by Shail3, if the following asymptotic result for the kernel M (P, A) is made
use of :

)
M(Pp Ay ~ ?‘(p‘i)l—lz‘ e?(ptd) I
max(pl)

e 2aw dw _
=P w—nyire T 0@,
..(32)
with ¢ = p/p.

We do not proceed any further with this problem here, as the other details are
going to be repetitions of Shail’s work3.

Problem 3
The following dual integral equations arise, as shown by Goodrich4, in the study

of a viscous flow problem induced by a rotating circular disc, kept on the surface of a

bulk fluid of viscosity u, which is otherwise contaminated by an adsorbed fluid film of
different viscosity 7.

.f" fO) ) dy = or, (0 < r < a) .(33)
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f(py + )GV dy =0, (> a) .(34)

where « is the constant angular velocity of the disc of radius a, rotating around its
axis.

Goodrich? has devised a special method of solving the above dual equations (33)
and (34) in the three different circumstances, as given by the cases (i) b=0,(1i) =0
and (iii) » %< 0, y 2 0. But, as pointed out by Shail5, Goodrich’s solutions are not
the correct ones, since they involve certain divergent integrals.

It is because of this major difficulty that Shail> has attacked the physical pro-
blem of Goodrich? and several other generalization of it6~8, by a method utilizing the
Green’s function technique.

We have shown below that the dual integral equations (33) and (34) can. also be
attacked for their solution in the three cases (i), (ii) and (iii) as considered by Good-
rich?, in a straightforward manner as described for the Problems | and 2 above, and
we thus infer that the use of the Green’s function technique can be avoided here
also.

Case (i) : p = 0— In this special case, the dual cquations (33) and (34) take up
the forms :

Zof(y) L) dy = or (0 € r < a) .(35)

:f:°y2f(y) Ji(yr)dy =0( > a) ..(36)

and, the second eqn. (36), can be recast, by using the Bessel equation (1f), in the
form

f TN JL(yr)ydy = Colr (r > a) ~.(37)

where Cy is an arbitrary constant to be determined.

. A straightforward use of the Hankel inversion formula to eqn. (35) and (37)
gives

S () = CoJo (ay) + wa2 J3 (ay). (33)
(see Gradshteyn and Ryzhik13, p. 683).

We ultimately find that the constant Co appearing in (38) must be chosen to be

2 . .
wa® in order to make the integral in (36) convergent, in the sense mentioned in the
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introduction, and this agrees with the observation of Goodrich, even though f () is
different.

Case (ii) : 1 = 0— In this case, the dual equations to be be solved are the ones
as given by eqn. (35) and the new equation

I ) 51 orydy = 0, ¢ > a). | (39
Assuming that

Trornonay-smo<r<a ...(40)
and using Hapkel’s inversion formula we find that

f = fg (D A1 (W) dy. ...(41)

Then using (41) in eqn. (35) we ultimately derive that

4 a
2 v2dy g ) da
ar ](r2 — v2)1/2 j 2 =iz — wr, 0 < r g a) ...(42)
0 v

obtained after utilizing the formula (10).

A repeated Abel inversion procedure, like the one adopted in the previous pro-
blems, ultimately gives

wg(r) = 4or (@ —r2)"12, (0 < r € a) ...(43)
and the solution of the dual equations can be completed by using (41).

Case (iii) : p # 0, v %= O— In the most general case of the dual equations (33)
and (34), when neither x nor 7 is zero, we obtain a Fredholm integral equation of the
second kind, which is similar to the one obtained by Shail5, by means of a procedure
as described below.

We first rewrite eqns. (33) and (34) in the form
o0
(I)f(y) NOr)dy=er(0<r<a -..(44)

and

§°y (A + a)fO) A (r)dy =0 ¢ > a) (45
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where Ao = nfua.

Then, setting as in the previous problems,
YA+ 0/ hondy =g O0<r<a ...(46)
0

and using Hankel’s inversion formula to eqns. (46) and (45), we find that

a

] Ag Q) J1 () dr. .(@T)
0

1
sO) = (I + X0 ay)
We next use the relation (47) in (44) and interchange the orders of integration to

obtain the following integral equation for the function g () :

a

[ Ag(A)da I(m) J1OrNhNdy =or, 0 € r <a). ..(48)
0 0

Equation (48) is an integral equation of the first kind and it can be converted
into an integral equation of the second kind, by observing first that

1 1 —doay
TF 20 ay ;[1 + TF Ao ay ] ..-(49)
and then using the result (10) along with an Abel’s inversion procedure, of a type
similar to what is known as Williams’s method12,

We find that the second kind Fredholm equation is obtained finally in the form

80+ L* (1) g () di = 4o, 0 < v < 0) (50
where
¢ (A) da
gt =v I @%_—‘g)ﬁg. ...(51)
v
and
201 = 2
L* (1) = — J. T—_’_—/\g%f’— sin (#9) sin (vy) dy. w(52)

Equation (50) can be easily identified to be similar to the one obtained by Shail5, for
the problem of Goodrich4,
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A slightly more general dual integral equations, than the ones given by (33) and
(34), which are

[ «]

[[14 4522w o nonay-wpo<r<a .63
0

and
2 ff(J') yIh(yPdy =0,(p > a) ..(54)

where & > 0, can also be reduced to a Fredholm integral equation of the second kind
by a method similar to the one described above.

The equations (53) and (°4) arise in the rotating disc problem of Shailé, when
the disc is kept at a distance a below the contaminated surface considered by Good-

rich, so that the particular case & = 0 of (53) and (54) correspond to egns. (33) and
(34).

3. CoNCLUSION

The present paper has dealt with the dual-integral-equations-formulation of some
of the well-studied axi-symmetric mixed boundary value problems of potential theory
in a manner different from the ones used in the literature, but is very straightforward
otherwise. The principal aim has been to show that for the three problems discussed
here, or its generalizations, it is not necessary to employ any other complicated
technique, such as the Green’s function technique, used by previeus workers even
though the merit of the latter technique is unquestionably of a higher level, if one has
to handle axisymmetric bodies other than Circular discs as has been the case with the

above three problems.
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