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In this paper we prove a fixed point theorem for a generalized contraction
map intrcduced by Altman and then derive a few known results as
corollaries.

Altman? proved the following interesting theorem : Let x be a complete metric
space and f : x—x a generalized contraction, i.e.,

d(fx,fy) < Q@ (x,y) forallx,y € X,
where Q satisfies the following :
(a)0< Q@) <t forallt € (0, 11},

(b) g (1) = t](t — @ (1)) is nonincreasing,
i
© ({lg () dt < oo

and
(d) Q is nondecreasing.

Then f has a unique fixed point (see also Altmanl),

Recently Watson et al.6 pointed out that the fixed point is not necessarily unique
under conditions (a), (b) {(c) and (d). Carbone and Singh3 gave a suitable example
showing that the fixed point is, indeed, not unique.

Watson et al.6 proved a theorem for a pair of mappings showing that Fx = Gx
has a unique solution under a set of conditions, where F is a generalized contraction
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and G is an expansive map. Their theorem improves a result due to Norris and
Schgald.

Our aim is to prove the following theorem and to derive a few known results as
corollaries.

Theorem | —Let X be a complete metric space and letf, 2: X = X be con-
tinuous functions such that

d(hx, hy) < Q (m(x, y)) forx, y, € X

where

m(x, ) = max {d (fx, ), d (f, h2), d (fy, hy), L) AR
Also suppose
(i) f and A are weakly commuting, i.e.

d (hfx, fhx) & d (fx, hx), and
i) A (X) C f(X).

Then f and h have a unique common fixed point. (i.c., there exists xo € X such
that fxo = xp = hxg).

In this case Q satisfies the following :
Q is a real-valued function such that
@0< @) <yfory>0,and Q (0) =0,

(b) g (») = y/(y — @ (»)) is nonincreasing on (0, o),

o |
() ({ g (») dy < oo for each y1 > 0,

and
(d) Q (») is nondecreasing.

PROOF : Suppose x and y are distinct common fixed points of f and A. Then
m (x, y) > O, since fx % hy. Hence,

d (hx, hy) € Q (m(x, )
< max {d (fx, /), 0, 0, d (fx, )},
a contradiction.

To prove the existence, take xo in X and set f1 = d (hxo, fxo0). Suppose 13 = 0.

Then :
d (hhxg, hxo) < Q (m(hxo, xo))
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where
m (hxp, x0) = max {d (fhxo, fxo), d (fhxo, hhxo), d ( fxo, hxo),
d (fhxo, hxo) -;- d (fxo, hhxo) }

Since f and & are weakly commuting and fxo = hxo,
we have ‘
d ( fhxg, hhxp) = 0.
Hence
m (hxg, xg) = d (hhxg, hxp).
Note that m (hxo, x0) must be zero, otherwise m (hxp, xg) > 0 would imply
d (hhxo, hxo) € Q (m{hxo, xo)) < d (hhxo, hxg)
a contradiction.
Thus m (hxg, x9) = 0, i.e., hxo is a fixed point of h.
But then
ffxo = fhxo = hhxo = hxo = fxo
ie.,
Jxo = hxo is a fixed point of /.

We may assume, now that 1 > 0. Since & (X) C f(X) there exists an x; € X with
fx1 = hxo. In general, define {xs} C X so0 that fxs = hxn_1,n > 1.

Without loss of generality we may assume that fxn 3= hxa for each n. For if
JSxn = hxn for some n, then a repeat of the above argument, with xo replaced by x4,
yields fxn as a common fixed point of f and 4.

Define {tn} by tay1 = Q (ta), with #1 = d (Axe, fxg). It then follows by assump-
tion a) of Theorem 1 that

() 0 < tn1 Cta < f1,n = 1. Moreover, by hypotheses (b) and (c), the series

X tn converges (sece Altmanl). Furthermore, by induction on n € N, we have
nel

(it) d (hxu, hxn-1) < ta1, n > 1.
Indeed, forn = 1,
d (hx, hxo) < © (m(x1, x0)

where
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m (%1, x0) = max {d (1, fxo), d (fx1, k1), d (fxo, hxo),

d (fXI, hX()) + d (f-x09 hxl)}
2

= max {d (hxo, fxo), d (hxo, hx1), d (fxo, hxo), d(f. xg, hx1) }

= max {d (hxo, fxo), d (hxo, hx1)} > 0.
Now, if m (x1, x0) = d (hxo, hx1), then
d (hx1, hxo) & Q (m (x1, x0)) < d (hxo, hx1)
a contradiction.
Then
_ m (x1, x0) = d (hxo, fxo) = #1.
Thus (ii) is proved for n = 1.
Assume now that (ii) holds for some n > 1. Then
d (hxn.1, hxa) < Q (M (X041, X2)),

where

m (Xn41, Xn) = max {d (fxns1, [Xn), d (fXn41, hxn41), d (fxa, hxa),

d (fxns1, hxn) + d (fXn, hxn.1) }
2

= max {d (hxns1, hxn), d (hxn, hxn-1)}.
Note that by the assumption fxs #* hxs for all n, m (xu,1, Xs) > O foralln. If
m (Xn+1, Xu) = d (hxn+1, hxs), then we get
d (hxns1, hxs) < Q (m (Xn+1, Xn)) < d (hXn41, hxn), a contradiction.
Therefore,
m (xn41, Xn) = d (hxs, hxn_1)
and
d (hxay1, hxn) < Q (d (hxn, hxn-1))
< Q (tn,1) = lnge.

Clearly {#xn} is a Cauchy sequence. In fact, if n1 and » are natural numbers
with m < n, then
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n-1 n-1
d(hxm, hxp) < X d(hxi, hxi 1)) € T ts,0.
i=m t=m

The convergence of £ ¢, implies that {ixs} is a Cauchy sequence, hence converges to
1

n
a point y € X. Since Axy = fxn,1, {fxn) also converges to y. Since f is continuous
we get fhxn — fy. But f and h weakly commute. Hence we get d (hfxs, fy) <
d (hfxn, fhxn) + d (fhxa, f¥), and Afxn — fy.

Since 4 is also continuous, Afxn — hy, so hy = fy.

Then, a repeat of the argument at the beginning of the proof with xo replaced
by y, yields hy = fy as a common fixed point of f and k.

The following results follow as Corollaries :

Corollary | —If we replace weakly commuting by the commuting property i.e.
fhx = hfx for all x € X, in Theorem |, then fand # have a unique common fixed
point. Note : Recall that commuting mups are weakly commuting, but not conversely
(see Sessad).

Corollary 2—If m (x, y) is replaced by d (fx, fy) in Theorem I, then f and 4
have a unique common fixed point.

Corollary 3—We get a result due to Carbone and Singh3 by putting 4 (fx, f¥)
for m (x, y) and commuting for weakly commuting in Theorem 1.

Corollary 4—In Corollary 3, if we put f = I, the identity function, then we get
a theorem of Watson er al.6.

Theorem | can be used to find the solution of an operator equation of the form
hx = Gx, under suitable conditions on G.

We state the following given in Watson ef al.6.
Theorem 2—Let h, G : X — X be such that
(i) his as in Theorem | with f = I, and m (x, y) = d (fx, fy),
(ii) d(Gx, Gy) = d (x, y) forall x, y € X and
(iii) A (X) C G (X).
Then hx = Gx has a unique solution z and for every

xo € X, lim (G-1 h)® xp = z.

n—>o

In this case G~1 h satisfies the conditions of Corollary 4 (see Watson et al.¢ for
details).
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