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Hodograph transformation is employed for steady, plane, viscous, incom-
pressible constantly inclined two-phase MFD flows and a partial differential
equation of second order obtained which is used to find the solution for
vortex flow.

1. INTRODUCTION

Multiphase fluid phenomena are of extreme importance in various fields of
science and technology such as geophysics, nuclear engineering, chemical engineering
etc. In recent years, considerable attention has been paid to the study of the multi-
phase fluid flow system in non-rotating or rotating frames of reference. Multiphase
fluid systems are concerned with the motion of a liquid or gas containing immiscible
inert particles. Of all multiphase fluid systems observed in nature, blood flow, flow in
rocket chamber, dust in gas cooling systems to enhance heat transfer process, move-
ment of inert particles in atmosphere and sand or other suspended particles in sea
beaches are the most common examples Naturally, studies of these systems are
mathematically interesting and physically useful. The presence of particles in a homo-
geneous fluid makes the dynamical study of flow problems quite complicated. How-
ever, these problems are usually investigated uncer various simplifying assumptions.

Saffman! has formulated the equations of motion of a dusty fluid which is
represented in terms of large number density N(x, t) of very small spherical inert
particles whose volume concentiation is small enough to be neglected. It is assumed
that the density of the dust particles is large when compared with the fluid density so
that the mass concentration of the particles is an appreciable fraction of unity. In this
formulation, Saffman also assumed that the individual particles of dust are so small
that stokes’ law of resistance between the particles and the fluid remains valid. Using
the model of Saffman, several authors including Michsgel and Miller2, Liu3, Debnath
and Basu? and S. N. Singh et al.5, have investigated various aspects of hydrodynamics
and hydromagnetic two-phase fluid flows in non-rotating system.

Transformation techniques have become some of the powerful methods for solv-
ing non-lincar partial differential equations. Amongst many, the hodograph transfor-
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mation has gained considerable success on fluid dynamics problems. Ames$ has given
an excellent survey of this method together with its application in various other fields.
Chandna et a/.8 have used the hodograph transformation for steady MFD flows, Also
Singh et a/.10 have used hodograph tcansformation in steady rotating MHD flows aad
obtained some solutions.

In this paper, hodograph transformation is employed for steady, plane, viscous
incompressible constantly inclined two-phase MFD flows and a partial differential
equation of second order obtained which is used to find the solution for vortex flow.

2. Basic EQUATIONS

The basic equations of motion governing the steady flow of a dusty, incompres-
sible, viscous fluid with infinite electrical conductivity in the presence of magnetic
field are

divi =0 (20)
P [(a grad) @] = —gradp+pcurlﬁxﬁ+KN(i;— ) +nvy2a
..(2.2)
curl (a x H) =0 w(2.3)
div(No) =0 ...(2.4)
m(v.grad) v = K (& — 9) «.(2.5)
dvH=0 . ...(2.6)

where i, 7, I-i, D, P, 0, u are fluid velocity vector, dust velocity vector, magnetic field
vector, fluid pressure, fluid density, kinematic coefficient of viscosity and magnetic
permeability respectively; m is the mass of each dust particle, N the number density
of dust particles and K the Stokes’ resistance coefficient for the particles.

The situation for which the velocity of fluid and dust particles are everywhere
parallel, is defined as1l

D = N @ -.-(2.7)

where « is some scalar satisfying
#.grada =0 «.(2.8)
which implies that « is a constant on the fluid streamlines.

Introducing vorticity function, current density function and Bernoulli function
defined, respectively, by
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o Gus 0w
£ = e o .29
_8H, oH
Q = vt -a—y-— ...(2.10)
B=p+4 }p U2 ..2.11)

where U2 = uf + “: , the system of eqgns. (2.1) — (2.6) can be replaced by the fol-
lowing system

o Oup
= e =0 (2.12)
o€ 2
ng — Phtn+ kO He — K@ ~ N = . (2.13)
oz | ?
N o — Pur + pQH + K(x— N)ug = % e (2.14)
w1 Hy — ug Hy1 = f(arbitrary constant) ...(2.15)
8 fu 2 2
(il g2 rul) v (wg(5)+ e 5(5))]
- K( T 1)u1 (2.16)
mal o Cus dug ' 2 ® -] o
T[W(“‘ i3 )*"2 (s 2 ’AT) +m é?('zv_))]
- K(—;— —1 )uz 217
ofq 0H>
T+ =0 (2.18)

The advantage of this system over the original system is that the order of the partial
differential equation is decreased.

We now consider constantly inclined plane flows and let g denote the constant

non-zero angle between @ and H. The vector and scalar products of 4 and ﬁ: using the
diffusion equation (2.15), yield

up Hp — us Hy = UHsinag = f .--(2.19)

uy Hy + ug Hy = UH cos ap = f cot ag
where

LENEEY)
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Solving (2.19), we get

= t%‘ (Cur — w), Hy = %(C uz + ) «.(2.20)

where C = cot «g is a known constant for a prescribed constantly inclined non-aligned
flow.

Using (2.20) in the system of equations (2.9) — (2.18), we have

Ouy Ouy

R 2D
] %%—PEm-%— %%I(C”Z“"“l)“f((d—-N)ul

- (2.22)
7 —Z—%—Pb’.uw B (Cun —ud) + K = Mwa = %y‘?

. (2.23)
2 a a
T (a3 k) e (n ()
b7} &
= = — = ...(2.24
+"2ay( ))] K(N 1)u 29

o
N
mef o o up 3 us & [ a _3_(_4_))]
T[W(’“ ax +“2"_)+“2("1 6x(N)+u2 ay \'N

y
= K(% — 1)u -.2.25)
@ =+ 2urug) (aa;u + a_;ic&) +(C, — Cu} + 2ur ug)
(%’g - _38.;12_) -0 (2.26)
_%2_ _ %‘;‘.1. = 227
%(Eﬂ%ﬂ_) — % (_Cﬂc_];_‘iz_) - % ..(2.28)

Let the flow variables w1 (x, ¥), us (%, ¥) be such that, in the flow region under
consideration, the Jacobian

7= 3 (w1, ua)

7% satisfies 0 < | J | < oo,
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In such a case, we consider x and y as functions of w3 and u2 such that the following
relations hold true :

3u1=121_ aul____]ax

ox ous ' ey duy

dug _ _31 dup ai
B = J o = Fup ...(2.29)

Employing transformation equation (2.29) in (2 21) and (2.26), we get
ox 8y
™ Py -.(2.30)
2 2 ox ay
(Cu1 - Cu2 — 2u1 ug) ( T —5—1;2-)
2 2 ax ay
+ (ul uy + 2C uy us) (-—*—auz 4 F ) = 0, «(2.31)

The equation of continuity implies the existence of stream function ¢ (x, ¥) so that

24 a
—67- = - U3, ——a—-y— = Ui. ..-(2.32)

Likewise, equation (2.30) implies the existence of a function L (u1, u2) called the
Legendre transform of the stream function # (x, y) such that

oL oL
e = =% g = (2.33)

Employing (2.33) in (2.31), we have

2
W - - 2w TE 4 @C W — 208 — durw)
auf
82 L 2 2 2L
s s + (2C uy us + u) u, ) . = 0.
au2

...(2.34)
Now introducing the polar coordinate (U, 6) in the hodograph plane i.e. the (u1, v2)
plane through the relation :
g = Ucos g, uz = Using
equation (2.34) gets transformed into
2L 2 #L 1 2L _ 1 oL 2€ _ .
a U2 UaUog U2 oe2 T U Uz a0
«.(2.35)

where 9 is the inclination of vector field &.
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3. VorTEx FLow
A solution of (2.35) is given by
L=BaU2 4+ (Ad1cos6 + Bisin®) U

=Ba(u} +ul )+ A+ Byun (3.0)

where 41, By and B are arbitrary constant and By 7 0. In this case,

oL 3
L 2w+ By = - a?%‘ =~ QB+ 4) .32

and therefore the velocity field is given by

y + A1 x — B

U = — ——2—32—-, ug = 2B2 ..(33)
These relations represent a circulatory flow.
From (2.20), we get -
H = 2B fl(x — By + C(y + )]
! (X — BE + (v + A2
and
2B f[C (x = By) — (y + 41)]
H; = . ...(34
: X — BT+ O T AP 34
The vorticity £ and current density £ can be expressed as
E = L Q =0, «..(3.5)

E; ’
From the integrability condition for B with the use of (2.13) and (2.14) and [(3.3)—
(3.5)], we obtain

(x—Bl)g;(N-a)+(y+A1)—(,f;uv—a)+2m—a}=o.

...(3.6)
Solving (3.6), the number density of dust particles N (x, y) is given by
G
= ..(3.7
N (x—Bl)(y+Ax)+“l 3.7
where C; is an arbitrary constant. From equation (2.8) and (3.3), we obtain
a=Cal(x - B1)2 + (y + 41)%] ...(3.8)

where C3 is an arbitrary constant.
Hence

.. ‘ ¢

(x— B+ (y+ 41)

N + Co[(x — B1)2 + (v + A1)3) ...(3.9)
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Using (3.3) — (3.5) and (3.7) in (2.22) and (2.23) and solving, we get

p KCy x — By
B = — 2 ] A 2 fuliiat Phdds C
" [(x — B1)? + (» + 41)3] + 3B, ny+A1+ 3
4B,
...(3.10)
where C3 is an arbitrary constant. The pressure P is given by
P KC x — B
P=2C — By)? 2 .
3+832 [(x 1)2 + (v + 41)2] + T lny_{’_A1
2
«.(3.11)

In this case the streamlines are given by
(x — B1)2 + (¥ + A1)? = constant
which are concentric circles. Summing up, we have :

Theorem 1—If the dust particle is everywhere parallel to the fluid velocity in the
steady, plane, constantly inclined MFD flow of an incompressible, viscous, two phase
fluid, then the streamlines are concentric circles and the dust particle number density
is given by (3.9). Also the velocity, the magnetic field, the vorticity, the current density
and the pressure are given by (3.3), (3.4), (3.5) and (3.11) respectively.

4. CONCLUSION

There are very few exact solutions of two-phase MFD flows. The mathematical
complexity of the equations governing the flow of an electrically conducting has pro-
hibited a thorough analysis. To reduce some of the complexity, it becomes necessary
to make certain assumptions about the inherent properties of the two-phase fluid.
Furthermore, all the methods of analysis to this date require that we impose some
restrictions on the angle between velocity field vector and magnetic field vector. In the
present work, Saffman model for infinitely conducting two-phase fluid flow considering
constant angle between u and H, called constantly inclined flow, is taken and exact
solutions of physical importance are obtained applying hodograph transformation.
Although the scope of the present work is limited, it is believed that by using the
approach of this paper and the exact solution obtained, work towards boundary value
problem of practical importance can be pursued.
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