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Assuming (i, fls,- - -, 4, to be arbitrary non-negative integers and M(y;,,. . . 1),
the minimum namber of vertices on waich there exist £ noncomplete regular
graphs of degrees fly, fty,-+ -, fiy it is proved that

2if u=0
4ify =1
i+ 2if =2 is even
p+3if u> 3is odd.

M (g, .- ) =

where

p= max {u}
All graphs considered in this paper are finite, undirected, loop-free graphs
without multiple edges. For the terms in graph theory used in the paper without
specifically defining them, the reader may refer to Harary (1969).

A graph G (X, E) with vertex set X and edge set E is said to be regular of
degree n, if every vertex xe X is joined by single edges to n other vertices of G.
A complete graph of order n is a regular graph of degree n — 1 on n vertices; i
is denoted by K,. Given any natural number n, the maximum degree of regu.
larity of a graph with n vertices is, therefore, n — 1. If n=2k,k > 1, then it is
known (Fiorini and Wilson 19764, b; Harary 1969) that the edges of K, can be
coloured with n —1 = 2k — 1 colours, such that no two incident edges receive
the same colour. In such an assignment of colours to the edges of K, each span-
ning subgraph of K, whose lines are all of the same colour constitutes what is called
a l-factor (or a matching) of K,. Thus, there are n — 1 1-factors of K, corres.-
ponding to each of the n — 1 colours assigned to the edges of K,. Clearly, any
two edges in a l-factor are non-incident, while at the same time, the totality of

the set of all edges of the l-factors of K, exhausts the (g) edges of K,. There-

fore, by removing the edges of a 1-factor of K, degree of every vertex of K, is
reduced by 1 and hence the resulting graph is a regular graph of degreen — 2. It
is also noncomplete, as a set of k edges is deleted from K,. Its order is still n, as
we do not delete any vertex in the process. Thus, the maximum degree of
a noncomplete regular graph of order » is n — 2,

Consider K, with n» even. The way in which the colours are assigned to the
edges of K, should now tell us that no two l-factors of K, have a common edge
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(we then say that the two subgraphs are edge-disjoint ; and such a collection of sub-
graphs is called a decomposition of the graph, if their unmion reproduces the
whole graph). This fact enables us to remove the edges of j I-factors simultaneously
from K, to obtain a noncomplete regular graph of degree n —1—j, 1 <j <<
n — 1. Implicitly, this construction also proves that there exists a noncomplete
regular graph of degree n for every given natural number n > 2. We have now
enough necessary facts to establish the following lemma.

Lemma 1—Let M, denote the minimum number of vertices on which there
exist & noncomplete regular graphs having different degrees of regularity. Then

4 ifk=2
M, =<k+1 ifk>=3is odd
k+2 if k>4 is even.

ProoF: First, note that k > 2, because we have to have at least two graphs
so as to be in a position to speak of different degrees of regularity. We shali
now prove that M, is an even natural number for all k¥ >> 2. For this, suppose
M, is odd. Let Gj, ..., Gy be noncomplete regular graphs of degrees u,, ..., g,
respectively and p; # py 5% ... 5 i, each of whose orders is M,. We claim that
. is even for each i, 1 <i < k. If this were not so, we must have at least one
i, 1 <i <k, such that u; is odd. But then since the sum of the degrees of the
vertices of a graph is always even, it follows that G; has even number of vertices.
This is in conflict with our supposition that |V (G,)| =M, is odd. Thus, all y, are even.
Therefore, the least possible choices for y;, without violating any of the condi-
tions laid on them, are y,=2 (i — 1), | < i < k (we may choose this order with-
outloss of generality). Now, consider Ky ;) from which k-noncomplete regular
graphs of order 2(k — 1) having degrees of regularity

2k —1)—2=2k—4, 2(k—-1)-3=2k—35, 2k—6,...,2,1,0

can be obtained, as mentioned above. Since the maximum degree of regularity
of a graph with M, vertices is M, — 1, it follows that

max {wl=pm < M, —1 < M,

1<k
Since 2(k — 1) = u, < M, and there exist k noncomplete regular graphs of order
2(k — 1) as shown above, we are led to violate the minimality of M,. There-
fore, we must have M, to be even for all integers k >> 2. We are now ready to

establish the formula for M. Obviously, M, =4 (indeed, G, = K: and G, = 2§,
are the two required regular graphs).

Next, as already observed, the maximum degree of regularity of a non-
complete graph on M, verticesis M, —2 and there are M, — 1 noncomplete regular
graphs of order M, having degrees of regularity M, —2, M, —3,...,2,1,0.
So, if we are to select k such graphs, we must have & < M; — 1, so that M, >
k + 1. Now, two cases arise for k; it could be either odd or even. We treat them

separately.
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Case 1:k is odd—1In this case, &k + 1 is even. We can then obtain from
K., k noncomplete regular graphs of order k¥ + 1 having degrees of regularity
0,1, 2,...,k —1, as mentioned earlier. Since M, is the minimum order, so
that this could be done, we must have M, <  k + 1. Also since M, >k + 1,
we get M, =k + 1 in this case.

Case 2:k is even—In this case, M, %k + 1, as M, is proved to be even
for all k > 2. Therefore, M, >k + 2. Now, k + 2 is also an even integer.
Therefore, we can construct from K, . , k+ 1 noncomplete regular graphs of order
k + 2 having degrees of regularity 0, 1, 2, ...,k (we can select any k from these
in order to show the existence of k such graphs), as described earlier. Since M,
is the minimum such number, we must have M, < k + 2, proving M; = k + 2
in this case.

Q.E.D.

Theorem 1—Let u,, .., u, be arbitrary non-negative integers and let M (u,,...,
1) denote the minimum number of vertices on which there exist & noncomplete

regular graphs of degrees u,, ..., u, respectively. Then
2ifu=0
4ifp =1
My, oo ) = K

u+2 1fu>2is even
u+3 ifu >3 is odd,

where

ProoF: Obviously, if ¢ =0, 1, then one has M (i, ..., p,) = 2, 4 respectively.
So, we may assume p > 2 henceforth. We can prove that M (u, ..., ) is an
even integer for all natural numbers k > 2 exactly in the same manner as in the
case of My in Lemma 1. However, if k = 1, then we have to treat the problem
separately as follows. In this case, u = g, so that M (u) is the minimum number
of vertices on which there exists a noncomplete regular graph of degree u. Since
there exists a noncomplete regular graph of degree p having M (i) vertices, we
must have p << M (u)— 1, so that M (u) = u + 1. If possible, suppose M (u) is odd.
Again, if ¢ is odd, then any regular graph of degree u must have even number of
vertices and so we must have u to be even. Since we can obtain from K, , a non-
complete regular graph of degree u having p + 2 vertices and since M (u) is the
minimum of such orders, we get M (1) < u + 2. But since M (u) is odd, this
implies that M (u) < u+1, so that we now obtain M (1) =u-+1. This is a contra.
diction to the definition of M (u), since any regular graph of degree p having
p + 1 vertices is complete. Therefore, M (x) must be even. Thus, we have
proved now that M (u, ..., ;) is an even integer for all natural numbers k.

We are now ready to proceed to prove the formula for M (y, ,...,u,). Since
there exists a noncomplete regular graph of order M (u,, ..., ) having degree

u, we must have u < M (uy, ..., ) — 1, so that M(py, ..., ) = p+ 1. Two
cases arise for g,
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Case 1: p is even—In this case, u + 1 is odd, so that M (u;, ..., ) = u + 1,
as M(u,, ..., ) is even. Therefore, M (y, ..., ) > pu + 2. But then since
u + 2 is even, we obtain u + 1 noncomplete regular graphs of order ¢ + 2 having
degrees of regularity 0, 1, 2, ..., u from K, , [since p; = (i — 1) for all i, we
may select any k of these p + 1 regular graphs], so that M (u;, ..., ) < p+ 2.
This proves M (uy, .... M) =pn + 2.

Case 2: p is odd—In this case, u + 1 iseven. Now M(u,, ..., u) #u + 1,
because if the equality holds, then it would come out that there are k noncomplete
regular graphs of order u + 1 with degrees g,, ..., iy, one of whichis of degree
u. But this is impossible, because a regular graph of order y + 1 having degree
u must be complete. Thus, M (y,, ..., i) = u+ 2. Since u is odd, p + 2 is
so and, therefore, it follows that My, ..., ) >=p+ 3. Also, on g+ 3
vertices there are p + 1 noncomplete regular graphs of degrees 0, 1,2, ...,u
(we can choose any k of these for the purpose) it follows that M (y,, ..., 1) <
p+ 3, so that M(yy, ..., ) = p -+ 3 in this case.

Q.E.D.

Remark 1: Note that the expressions for M (y,, ..., i) do not depend upon
whether all g, are distinct or not, since we are allowed to choose as many copies
of the regular graphs as required (so & can tend to infinity).

This motivates the problem of finding the minimum number of vertices on
which k nonisomorphic regular graphs exist.

Remark 2: One can prove Theorem 1 independently and derive Lemma 1.
But our approach gives scope for enumerating the isomorphism classes of non-
complete regular graphs indicated in Remark 1.
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