ON SOME INTEGRAL INEQUALITIES AND THEIR APPLICATIONS
TO INTEGRODIFFERENTIAL EQUATIONS
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Aurangabad ( Maharashira)

( Received 12 November 1975 )

In this paper we shall present some new integral inequalities which
can be used in applications as handy tools. To illustrate the applica-
tion of some of the inequalities we shall present some interesting
results on the behaviour of solutions of integrodifferential equations of
the more general type.

1. INTRODUCTION

Gronwall (1919) proved a very useful integral inequality what is now
referred to as Gronwall’s inequality also known as Bellman’s Lemma (Coddington
and Levinson, 1955, p. 37). This inequality has many uses in the theory of
ordinary differential and integral equations in proving uniqueness, comparison,
continuous dependence, perturbation and stability results. On the basis of
various motivations Gronwall-Bellman inequality has been extended and used
considerably in various contexts. Recently, in a series of papers the author has
established some new integral inequalities of the Gronwall-Bellman type that
have a wide range of applications in the theory of differential and integral
equations ( Pachpatte 1973; 1975a, b). The aim of the present paper is to
establish some useful integral inequalities which claim the following as their
origin.

Lemma 1 (Pachpatte 1973 ) — Let #(#), f(t) and g(¢) be real-valued non-
negative continuous functions defined on I = [0, = ); for which the inequality

s

x(8) S % + .ftf(:‘") x(s) ds 4 'J‘tf(s) ( fg(‘t.‘) x (T) dt) ds, t€ I
0 0 0

holds, where ¥, is a nonnegative constant. Then

§
#(t) S_xol:lq+ ft £(s) exp (J[ AT+ 2(0) ] dt) ds], 1€ I
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The main results of the present paper are given in section 2. Section 3
deals with the applications of some of these inequalities to the boundedness,
asymptotic behaviour, and the rate of growth of solutions of integrodifferential
equations of the more general type.

2. INTEGRAL INEQUALITIES

In this section we establish some new integral inequalities which can be
used as a tool in applications. A useful general version of Lemma 1 may be
stated as follows,

Theorem 1 —Let x(t), f(t), g(t) and £(¢) be real-valued nonnegative con-
tinuous functions defined on I, for which the inequality

s

t 4
*(t) < 2o+ off(s)x (5) ds + of so f £ (%) K(T) dr) ds

s T .

t
+ of s& (feef of B8y x () dE) de) ds 1)

0

holds for all ¢ € I, where x; is a nonnegative constant. Then

t 5
W) Zxo| 14 (ff(x) exp ( 5ff('l:) dt )

s T
x [ 14 of 2(0) exp( ! [a(k) +h(k)]dk) dt }ds A2)
for all t € I

Proor: Define a function m(¢) by the right member of (1). Then

4 t T
w(t) = £ 5(0) + £ 1) fg(r) % (1) T+ () f «® ( f k) 0y i ),
0
0

0

m(0) = x5, which in view of (1) implies
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t T

t
m(t) < f( t)[m(t) +0fg(‘t)mt at —I—0 &(T) ( J h(KYm(k) dk) dr] «(3)

Define

t t 4 T
o(t) = m(t) 4+ | g(T)m(T)dT + g(‘t)(ﬂ h(EYym(k) dk) dt,v(0) = m(0) = %o
J Jeolf

®
Thea it follows from (3), (4) and the fact that m(t) =< v(¢), the inequality
t
() < f(u(t) + g(t) [v(t) + f h(kyo(k) dk] (5)
0
is satisfied. If we define
¢
r(t) = o(t) -+ fh(k) w(k) dk, 7(0) = v(0) ==x, ()]

0

then it follows from (5), (6) and the fact that s(f) = 7(¢), the inequality

rO SO+ g(t) + A (1) (D

is satisfied, which implies the estimation for r(f) such that

¢
()= xo exr{ f[f(s) + 2(s) + k(s)] ds] w(8)
0
Then from (5), we have

t
OSSO0+ aOroexp] [L)+ 86+ 6 |
0
which implies the estimate for »(¢) such that

¢ 5

¢ -
o) < soexe f s ) 1+ Jeome | Of (eCt)+ Ko d Ji |

[]
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Substituting this value of #(¢) in (3) we have

. ¢

(1) S 0 0) ex ftfwds) K +fg<s) exp [ f (o(T) + (T)) dr] & ] )
0 1]

0

Now, integrating both sides of (9) from 0 to ¢ and substituting the value of m(t)
in (1) we obtain the desired bound in (2).

We state the following generalization of Lemma ! which may be convenient
in some applications.

Theorem 2—Let x(t), k(t), p(t), f(¢), g(tf) and A(t) be real-valued nonnegative
continuous functions defined on 7, for which the inequality

S

14 t
(0 < K0+ 50| [omras+ [ oo f {0 dt) s
0 0 0

s T

t
+ of s f o f () dn)dt)ds | . 10)

holds for all ¢ € I. Then

$

4 s .
10 = k0 + 0] [ k64 909 | of exp( tf ) ) dn)-(k<r>ff<r>+g(r>]

0

T
+ &8 (D) f LA + e(n)+-hin)
0

x e ft KO QO +a@+io1aanler | o |
:

for all t € I

By setting m(t) equal to the expression in the brackets { ] given in (10)
and following the similar argument as in the proof of Theorem 1 we obtain
the desired bound in (11).
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Another interesting and useful generalization of Lemma ! is embodied
in the following theorem.

Theorem 3—Let x(t), f(t), g(t) and h(t) be real-valued nonnegative continuous
functions defined on I, for which the inequality

)

X0) S ot f SOy ds + f 7 ( [ewnmic)as

Y

3 T

1 f f(s)( J &(T) ( f h(k)x®(k) dk) dr) ds

0

holds for all ¢t€ I, where x, is a nonnegative constant and 0 =a < 1. Then

Ky T

i s
Xt) < s+ f £ exp( f AT dr)[xo 4 J o« exp( J o) dk)

1

T k .
[0+ =a) i) el (=14 a) () + e Yk | ™ i i

0

for all £ ¢ 1.

The proof of this theorem follows by the similar argument as in the proof
of Theorem ! with suitable modifications. We omit the details.

The next result presents another useful generalization of Lemma 1. This

form is found to be convenient in some applications.

Theorem 4—Let x(t), f(t), g(t) and h(t) be real-valued nonnegative conti-
nuous functions defined on I, for which the inequality

5

i t
) ot J Sy ds + bf so( Kf OO IT) s

4 s
4 ! h(s)x(s)[x(s) +Jg(t)x(1:) dt] ds «(12)
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holds for all ¢ € I, where xo is a positive constant. If

t 5
1— xofh(s) exp ( [S(D + 2(D)] dt) ds > Ofor all¢ € I, then

0 0

t i {

(= roexp {mra0 )t f F906) exp( f KO )i .(13)

g s
for all + € I, where
¢
o exp( S Lf0) + (1)

QW) = t - Lt €I (1)
1 —xobf h(s) exp (‘of LAT) 4 2(T))dT) ds

PrOOF : Define a function m(t) by the right member of (12). Then

t ¢
m'(8) = f(Dx(t) + (&) § g(T)x(T) dT-4h(£)x(t) [x(t)—}—ﬁj‘g(t) x(T) d‘CJ, m(0)=x¢
d
which in view of (12) implies

¢ ¢

m(t) < £(t) [m(t) + J £Tm(T) dr]+ h(t)m(t)[m<t>+ J g(t)m(t)dr] (1)

If we put

t

o(t) = m(t) + J g(OM(T)dT, n(0) = m(0) = ¢ ...(16)

it follows from (15), (16) and the fact that m(t) < u(t), the inequality
o'(8) = K)o X)) + [f(£) + g(8)) o(t) «(17)
is satisfied. The inequality (17) can be written as

A0 () —Lf (1) + &) v=X(t) S h(H) (18)
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Put »71(t) = n(t), so that s73[)0'(}) = —n'(t), and n(0) = x;~!, then we obtain
A () + [F(#) + 2(O)] n(t) > — h(¥) (19)

which implies the estimation for n{f) such that

t 4 s
(t) exp( f LFG) + gs) ]ds)> n(0) - f Ks) exp( f LA(T) + (o)) dr) ds
0 1} ¥]

Now, substituting n(t) = v~1(¢) in the above inequality, we have
"

t
%9 eXp(Of Lf(®)+ g1 ds)
o(t) < =20

i s

I—x OJ' h(s) CXP((.’f LA (D) + &(v)] dT) ds

since n(0) = -;— Then from (15) we have
(]

m' (1) KR (Dm(H) + f(HQ(D)

which implies the estimate for m(t) such that

t t [1
) = soe froa0 )+ [ 106 e (froewar)a
0 Y $
Now, substituting the value of m(#) in (12) we obtain the desired bound in (13).

We nexs establish the following integral inequality which can be used in
obtaining the lower bounds on an unknown function,

Theorem 5—Let u(t), v(t), p(t), f(t), g(t) and A(t) be real-valued nonnega-
tive continuous functions defined on 7 =-{a,b]; and

t

i t
0>~ | ! SRty + ! s [ stomcoas i

K

4 ¢

+ f s ( [ ( froueraga)u) (20)

s k T
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for a< s < t=<b, then
i 3
u(t) > v<s)[1 +p(0) f F(¥) exp ( _f o) £ () dk)
s T

x [1 + ‘g(k) exp( ft (7)) + g(Z)]dQ)dk] dt T (21)
T k
for als<t=b.

PROOF : For fixed ¢ in the interval I, we define for a S s < ¢

¢

m) = w) 40| ft SRy + ft 10 ( faceman )
s s k

¢ ¢

t
+ sf s oo J0 oy acyar o JRECRTORC

3 T
From (22) we have

t F 4
()= — p(t)[fmv(s) + £05) f (TADIT+ £(5) f g<r>( f K o) dc)dr]
K K] T
which in view of #(s) = m(s) implies

4 t H
() > — L6 [m@ +sj'g<r>m<r>dr + J' g<r>( j‘ KT mD) dc)dr] 23)

T
Define

t

t 4
ws) = m(s) + f (Om(R) dT+ f g<-c>( f KO m(C) dc)dt, a(t) = m(t) = u(®). ...(24)
s s T

Then it follows from (23), {24) and the fact that m(s) = n(s), the inequality
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H
7 + g<s>[n<s> + j‘ KEm(T) dr]+ PO s >0 1 (25)
k)
is satisfied. If we define
t
r(s) = n(s) + f KO)A(T)dT, () = n(t) = u(t) .(26)
s

then it follows from (25), (26) and the fact that n(s) < r(s), the inequality

() + [A(s) + g(s) + pB) S (N 7(s) >0

is satisfied, which implies the estimation for r(s) such that
i
) 2 u®) exp] [ G0+ 80+ w05 @y |
$
Then, from (25), we have
t

W(s) + $(8) F(E) > g—(s)u(t) exp[ f (h(r) 4 gD+ p(t)f(t)) dr]

$

which implies the estimation for n(s) such that

4 t t
(s < ul) cxp( f §O (D) dr)[1-+- J' &®) exp ( tf (HB+¢(kY) dk) dr]

Substituting this value of n(s) in (23) we have

t
ml ()2 — p(t) f(sYuCt) exp ( f £ £(T) dr)

X [ 14 J't &(T) exp ( J't (h(k) + g(k)) dk) dt] W (27)
$ T
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Now, integrating both sides of (27) from s to ¢ and substituting the value of
m(s) in (20) we obtain the desired bound in (21).

As an application of Theorem 5 we establish the following interesting
and useful integral inequality.

Theorem 6—Let u(t), o(t), p(t), f(t), g(t) and A(t) be real-valued
nonnegative continuous functions defined on ¥; G(r) be a continuous, strictly
increasing, convex and submultiplicative function for r>>»>0; G(0) =u,

lim G(r) = =; a(t), B(¢) be continuous functions on 7; af(2), B(t) >0,

¥~ co

a(t) + B(t) = 1; and

t t i
u(t) > o(s) — p(t) G f FRYG(o(k))dk 4 f f(k)( 2(T)G(o(T))dT )a’k
$ Ky k

t 14

n f s( g(r)( f KO G(o(Q)) T )dr)dk (28)

s k T

for a< s<{t<b. Then

t
u(t) >« (G| a= )G (o () [1 +BC( p(1) BI)) f 7

X exp( ft B<z>G<p<t>B-l<t>>f<k>dk).[ - f tg(k)exp( f [
T T k

+ K@) ds )dk ]dr ]-_‘ (29)

for a<_s<t b

ProoF : Rewrite (28) as

t
o(s) < a(t)(u(t) a™'(®)) + Be) P(t)B'."(t))G",‘[ff (BG(u(k)) dk +
3

equation continued next page)
q
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¢ i 14

+ f f(k)( kf g(I)G(v(‘C))dr)dk + j f(k)( kf g(t)( tf HZ) GEC)) d z)dr )dk]

for a<{s< t < b. Since G is convex, submultiplicative and monotonic, we have
t
a()G(u(t) a7H()) = G(o(s)) — B(f)G(P(t)B.“‘(t)){ff (BG(ky)dk

¢ t t

+~ff(k>( J g(‘E)G(l‘(‘C))d'C)dk + ftf (/c)( g(t)( f A(C) G((())dT )d t)a’k ]

s k T

Now, an application of Theorem 5 yields the desired bound in (29).

Gollwitzer (1969) and Langenhop (1960) have obtained lower bounds on
unknown functions. However, the bounds obtained here are different from those
obtained by the above authors.

We note that the integral inequalities similar to those given by Pachpatte
(1975b, §2) can be established by following the similar arguments as given by
Pachpatte (1975b). Since this translation is quite straightforward in view of
our Theorem 1, we leave it for the reader to fill in where needed.

3. APPLICATIONS TO INTEGRODIFFERENTIAL EQUATIONS

Recently, Imanaliev and Ved' (1972) and Karpievic (1972) have studied
the stability of the solutions of a certain class of integrodifferential equations.
The problem considered in this section is in the general spirit of the investiga-
tions in Imanaliev and Ved' (1972) and Karpievic (1972). We are here con-
cerned with the houndedness, asymptotic behaviour, and the rate of growth of
the solutions of integrodifferential system of the form

t t
x'(t) = F(t) + AQ) x() + | B(¢t, s)x(s)ds + H| t, x(t), | K(t, 5, x(s))ds
fi o o)
t

+ () W( 1, #(0), f K, x(s»ds), K(t) =6 (30)

to
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as a perturbation of the nonlinear integrodifferential system

[4
70 = FQ) + 40 5(t) + f B, 55) d5, 5(t0) = %o w(31)

to

The main tools in our analysis are the variation of constants formula developed
by Grossman and Miller (1970) and the integral inequalities established in section
2. Here x, y,F, H, K and W are the elements of R?, areal n-dimensional Euclidean
space, and yg # 0. We assume that F € C[RY, Rv], K € C[RY X Rt X R, R",
and H, W € C [R*XR*XR", R"]. The symbol }.) will denote some convenient
norm R as well as a- corresponding consistent matrix norm. We denote by x(f) =
x(t, tg, o) the solution of (30) through the initial point (5, ¥o) and (8 = (¢, to, o)
the solution of (31) through the initial point (¢g,y¢) for £o >0,

For p in the interval 1< p < =, L7 is the- usual Lebesgue space of

® l

measurable function g such that ngi, = ( f la(®)| dt)[) < ® is the set of all func-
0

tions which are locally L? on RYt. Consider the system (31) with 3(f)€ R*, A(f)
is an n by » matrix belonging to LLY(R!), B(t,s) is an n by n matrix that is
locally integrable in both variables. It is known (Grossman and Miller 1970)
that the unique solution y(f) of (31) is represented by

4
) = Rt te) 30+ f R(t,5) F(s) ds - (32)
to
where R(t,s) is an n by n matrix that is continuous in (¢, 5y and satisfies
¢
OR(¢
és’ ) = — R(t,5) A(s)—fR(t, u)B(u,s) du, R(t,t) = Iy, on the interval0 < s

S

< t, where I, denotes the identity matrix. Here R(Z,s) is called the resolvent
kernel of equation (30).

Then solutions of (30) and (31) with the same initial.values are related by
t s
() =) + f R(t,5) H(.r, x(s),f]f' G T, %(T) ) dT )ds +
to to

(equation continued next page)
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t s
+ t{ R(t, 5) x(s)W(s, +(5), { K (s, T, (1)) dT )ds .(33)

(see Grossman and Miller (1970) for -details).

In this section we are interested in the following stability definitions in
terms of the behaviour of solutions of (31) and its resolvent kernel which are
the natural extensions of the concepts recently introduced by this author
(Pachpatte 1975d) for nonlinear differential equations.

Definition 1-—The solution »(t) of (31)is said to be globally uniformly stable
relative to its resolvent kernel if there exists a constant M >0 such that

| 2, to, po) | <M | 30 |

and
| Rt s) | <M
for all 0t Cs<<t< @ and || < .

Definition 2 — The solution 3(t) of (31) is said to be exponentially
asymptotically stable relative to its resolvent kernel if there exist constants M >0,

a >0 such that

| 5t tos 90) | <M | yo | exp (=a(t—12o)

and

| R(t, 5) | M exp< (=a(i—s)
for all 0 <{to (st ¢ =» and |yo| sufficiently small.

Definition 3— The solution y(t) of (31) is said to be uniformly slowly
growing relative to its resolvent kernel if, and only if, for every a > 0 there
exists a constant M > 0, possibly depending on a, such that

l](t, tOx )’o) l <M 'yO l Cxp a("’(t_tO)

and

| R(t, 5) | < M exp a(t-s)

for all 0t s <t<® and |y | < =.
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We note (Pachpatte 1975d) that a continuous function 2(¢) is slowly grow-
ing if and only if for every a>0 there exists a constant M, which may depend
on a such that

[z | <M el 10

Our first theorem in this section deals with the boundedness of the solu-
tions of (30) under some suitable conditions on the perturbation terms and on
the solutions of (32).

Theorem 7— Let the solution y(¢)-of (31) be globally uniformly stable
relative to its resolvent kernel. Suppose that the functions H, W and K in (30) satisfy

H(t,x, 2) | <SO[] x|+ 211t €ER? (39
I Wtz 2) | <KO[| x|+ 12]1,t € R ...(35)
| K@, ) | <gl) |, 0<<s < » «.(36)

Here f, g, k € C[RY, R*] and
t s
1 —M]yo| fM/z(s)exp(f[Mf(t) + g(D)] dT )ds >0
o to

for all £t € RY, such that

[}

ff(s)Qo(J) ds< » ,fh(s)Qo(s) ds< o .(37)
to £
where
4
M| yo | exp{ | [Mf(s)+5()] ds
(frrorsons
Qo) = ..-(38)

1 - M|yl J'tM h(s) exp(f[M () + ()] dt))ds
i i

and M > 0, yo # O are constants. Then all solutions of (30) are bounded on RY.

Proor: Using the variation of constants formula developed by Grossman
and Miller (1970) the solutions of (30) and (31) with the same initial value are
related by
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14 s
(t) = »( @, s , %(5), 5, T, % s
x(t yt)+i{Rt )H(s )2{1{( T (t))d‘c)d

4 s
+ ,J- R, 5) x(5)W (s, 5), tf K(s, T, 2(T)) dt)) ds . (39)
0 0

Using (39), (34), (35), (36) together with the global uniform stability of the
solution y(t) of (31) relative to its resolvent kernel we obtain

[ x(D< T M| o | +fth () | #(s) | ds+ ftM J (S)U:t g | k(1) ] dt )df
to to

to
+ ft wie) |« 1 [ 1+ f CIECIET
L) )

Now an application of Theorem 4 yields

| (0 | < M| o] exp( f ch(s)Qoo) ds)
Lo

. tjo.‘M F()0.o(5) cxp( f MKT)Q «(T) dt)) ds

where Q ((f) is as defined in (38). The above estimation in view of the assump-
tion (37) implies the boundedness of all solutions of (30) on R*, and the
theorem is proved.

Our next theorem shows that under some suitable conditions on the
perturbation terms in (30), the exponential asymptotic stability of (31) relative
to the resolvent kernel implies that all the solutions of (30) approach zero as
i

Theorem 8—Let the solution y(¢) of (31) be exponentially asymptotically
stable relative to its resolvent kernel. Suppose that the functions H and W in (30)
satisfy the hypotheses (34) and (35) of Theorem 7 and let the function K satisfy

| Kt s,2) | e ™ g [x], 0ot ® ..(40)



1172 B. G. PACHPATTE

Here a > 0 is a constant, and f, g, k& C[R*¥,R*+] and
t

S
1 — M|y exp (ato)th () eXP(—aS)CXP(f[Mf(t)

to to

+ g(T) exp (— aT)] a,‘C)va>O, for all ¢t€ R+ such that

©

jf(s)Ql () ds< = ,J.h(s) exp{—as)Q () ds < » ws(41)
to to
where Q 1(f) =
4
M| 30 | explate) exp {121+ gy ds
f )

i s
1—M | yo | exp(—ato) f Mh(s) exp (—as) exp ( J' [M f(T) + £(T) exp(—aT) ]dt)ds
to

to
(42)

and M>0, yo # 0 are constants. Then all solutions of (30) approach zero as t—3 =,

PROOF : It is known that the solutions of (30) and (31) with the same
initial values are related by the integral equation (39). Using (39), (34), (35),
(40) together with exponential asymptotic stability of the solution y(#) of (31)

relative to its resolvent kernel, we obtain

4
LS M | 30| exp (= alt—to) + f M exp(— a(t—s»f(s)[ | x(5) |

to

-+ exp (—as)jg(t) | %(T) | dT ]ds

to

[ 4 s
Mexp (— ~ s\ x x — s x d
+tf p (—a(t—s))h(s) | (s)l[l | +exp ( ¢>;{gm\ (T) | r]ds

1]
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The above inequality can be written as

t
| %(t) | explaty< M | 30 | exp (atg) + f MAf(s) | #() | exp (as) ds
o

+ f MA£(s) ( fg(t) exp (—aT) | %(T) | exp aT) dr)ds

to to

H
+ f M k(s) exp(—as) | x(s) | cxp(a,s)[ Jx(s)) exp (as)
to

s
+ be(D) exp (—aT) | 2(T) | exp(aT) d‘t]a’s
to

Now applying Theorem 4 with x(¢) = | x(¢) | exp(«f) then multiplying by
exp (—at) we obtain

1
| %) | < Myo exp (—alt—t0) exp ( f M exp (=) Q(s)ds )
to

t t
+ exp(— at) | MF(s)Q(s) exp( | MA(T) exp (—4T)Q(T) dT )ds
frronioms(f )

The above estimation in view of assumption (41) yields the desired result if
we choose M and | x| small enough, and the proof of the theorem is complete.

To this end, we establish the following theorem which demonstrates that
all the solutions of (30) grow more slowly than any positive exponential.

Theorem 9—Let the solution y(t) of (31) be uniformly slowly growing
relative to its resolvent kernel. Suppose that the functions H and W in (30)
satisfy the hypotheses (34) and (35) of Theorem 7 and let the function K satisfy

| K(t,s5,2) | <exp(at) g(s) | %], 0Ks <<t > =
Here ¢ > 0 is a constant, and f;, g, k € C[RY, RY] and
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t s

1—M |y | exp (— a.to)th(:) exp (as) exp (f[Mf(‘C)
to lo

+ &(V) exp (x1T)] dt )ds> 0

for all ¢ € R* such chat

0 =]

ff(S)Qz(s)ds < w,fh(s) exp (as)Q2(s)ds <

to to
where

1
M [ 30| exp(—ate) exp ( J' [M.f (s) + g(s) exp(as)]ds)
ty

Q1) =

s s
1—M |y, ] exp (—as)fllliz(s)exp (us)exp( f[Mf(‘C) 4+ g(T) exp(a‘t)]dt) ds
to to
and M > 0, 39 # 0 are constants. Then all solutions of {30) are slowly growing.

The proof of this theorem follows by the similar argument as in the
proof of Theorem 8 with suitable modifications, and hence we omit the details.

Finally, we note that the results obtained in this section can be modified

very easily to cover the case when the perturbation terms in (30) are of the
forms

L s
H ((t, x(t),talf ((t, 5, x(s), { a(s, T, x(t))dr) ds ) W=0

and

i
<o

H ((t, x(t), f K ( t, s, x(s), f Sa(s, T, x“(t))d‘t) ds ), w
to to

by using the inequalities established in Theorems 1 and 3 respectively, under
some suitable conditions on the functions involved. These theorems will not be
given here since there are no new essential ideas to explain.
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