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The paper contains an analysis of the distribution of stress by the application
of pressure to the faces of a plane crack covering the outside of a circle in a
semi-infinite solid. Two problems are discussed. In the first problem it is
assumed that the free end is stress free and in the second it is assumed to be
rigidly clamped. By using the Hankel transforms and the theory of dual
integral equations, each problem is reduced to the solution of a pair of simul-
taneous Fredholm integral equation of second kind. Expressions for various
quantities of physical interest are derived for small value of its distance from
the free boundary by finding iterative solution of these equations. When
this distance is nearly unity, simultaneous Fredholm integral equations have
been solved numerically.

1. INTRODUCTION

The strength of a material in the presence of cracks is a problem of interest in
fracture as well as structural mechanics. Among quantities requiring thecretical
prediction are the member rigidity and the shear centre location. In addition, know-
ledge of the elastic stress field is potentially useful for strength estimates based upon
brittle fracture theory.

Recently several papers have appeared which treat stress distributions in an in-
finite solid due to the application of normal pressures to the faces of a flat external
crack. The three-dimensional case, in which the crack covers outside of a circle, has
been considered by Ufliand (1959) using toroidal co-ordinates and by Lowengrub and
Sneddon (1963) from the Integral transform technique. Lowengrub (1966) has also
solved the two dimensional plane strain problem for an external crack y=0, | x| > 1
opened by normal pressures, using dual trigonometric-equations and by the author
(Dhawan 1973) the case of crack in a thick plate when its free boundary is stress free.

In this paper we discuss a mixed boundary value problem in elasticity, which
however, seem to have received scant attention so far in the scientific literature, even
though they appear to be important for the design of various structures, which may
not adequately be represented by a two-dimensional model. The problem arises in

a natural way in the theoretical determination of stress inside a homogeneous elastic
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semi-infinite solid containing an exterior crack. The solid is supposed to be isotropic
and two types of conditions are imposed on the free surface i.e. (i) free end is stress
free and (ii) it is assumed to be rigidly clamped. The exterior crack is assumed to
be in a plane normal to this axis occupying the region outside of a circle whose centre
lies on the axis and whose radius is greater than the radius of the circle. The comple-
mentary problem of the penny-shaped crack has been considered by Srivastava and
Singh (1969).

The technique employed in this paper is that of integral transforms and the theory
of dual integral equations. The boundary conditions of mixed type lead to dual
integral equaticns. These equations are then reduced to Fredholm integral equations
of the second kind, which are amenable to numerical solutions. Using these solutions
the quantities of physical interest may be calculated.

The analysis throughout this paper is purely formal and no attempt has been
made to justify the interchange of various limiting processes. The numerical com-
putation was carried out on the digital computer at the Computing Centre of the Tata
Institute of Fundamental Research, Bombay. To solve, the integral equations, first
the kernels were evaluated using Gauss-Laguerre quadrature and then approximate
solutions were obtained by reducing integral equation to a system of linear algebraic
equations using the method of Fox and Gcodwin (1953).

2. FORMULATION OF THE PROBLEM

In the problems that we shall consider here, we assume that there is symmetry
about the z-axis. The position of a typical point of the solid may be expressed in
terms of cylindrical coordinates (r, ¢, z). For a symmetrical defcrmation cf the solid
the displacement vector (U) may be assumed to have components (v, 0, w) and the
only non-vanishing components of the stress-tensor will be @.,, ¢, 0., and T,,.

The crack is taken to lie on the line, z =0,1 g r <0. Let the solid be
divided into two domains: (1) the layer — 2 <z < 0; and (2) the half-space
0 <z < oo,

We shall consider two problems.

1
f
|

Fic. 1. Crack situated parallel to the free boundary.
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Problem 1

The free boundary is assumed to be stress free and the stresses on the surface of
the crack are prescribed. The boundary conditions can be written as

o, —h=0,1,.(r,—h =0 2D
for all values of r, and
0'”(7‘, O_) :O'l (r)’ Trz (r50—) :tl(r) ] > 1. .(2.2)
0ur ( 0F) = 09 (), Tre (1, 0F) = 1,() |
For convenience we suppose that
oy(r) = ag(r) = — p(r).
tdr) = tor) = — tr).
Problem 2
It is assumed that the free edge is rigidly clamped and the stresses are prescrited
on the surface of the crack. In this case in place of (2-1) we have
u(r, — hy = w(r, — h) = 0, for all values of r, (23
while the conditions (1:2) remain unchanged.

In addition, for z = 0, to pass through the region unoccupied by the crack, the
values of the components of displacement and stresses must be continuous. This
requires the following additicnal boundary conditions

0., 07) = o, (r, 0F)
Ty {r,07) = 1,,(r, 0%)
u{r,0°) =ufr,0%)

w(r, 07y =w(,07)

forr < 1. ...(2:4)

Again the basic equations of elastic equilibrium in the axially symmetric case are

du, 1 u_ u u , 3w _ |

2 - [ S5+ 5 E——ﬁ]a-u—zn) L+ e =0 .29
a W 1 dw 82w 9 /ou -

a- 2n)[ + 5 W) - GE s (5t T ) 0 ..(26)
out = 7o [0=n 3+ (5 + 7] - (27)

au ow .
Tee(r,2) = 8 + ar] --(2:8)
where & = =+ + 7’ E is Young’s modulus and » Poisson’s ratio of the elastic

medium,
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For the solution of the partial differential equation (2-5) and (2-6) we introduce
Hankel transform of u and w. We define

u (¢,2) = Hilu(r, 2), r—>¢ (29
w (& 2) = Fo[w(r, 2), —>£]. ...(2:10)

Multiplying (2-5) by &J; (¢ r) and (2:6) by £ J, (¢ r) and integrating with respect
to r {from 0 to oo, we get

[(1—27) D*~2(1—n) &} @ — Dw = 0 (21D)
[2(1—v) D*—(1—2n) &] 7% + Di =0 . (212)

where D = (5;) From (2-7) and (2-8), we have

6'22 = -3:10 [“'zz (rs Z), r"%g] == 1‘% (1“‘7)) Dw -+ n E'L—t_} .(2]3)

Ty =Fi 1, (r, 2), —>¢) = £ [Di — £w]. ...(2-14)

3. SOLUTION FOR THE SEMI-INFINITE SOLID

In the case of semi-infinite solid z >>> 0, assumed free from disturbances at infinity
we are interested in the solutions of the equations (2-11) and (2-12) which tend to
zero as z-—>> co, The appropriate solutions are

@ =(A4+Bfz)e
w=(41 + Btz) et
where

Ay = A+ (3 — 4) B.

Hence the expressions for the components of displacement vector and stress tensor are

-+

u (r, 7) =f (AL BED) e T, (¢r) de, o (3])
4]
w(r,z) = f £(4y + Bez)es Iy (#)d¢, w(32)
[4]
ore (1, 2) = — 2#]52{/1 L2 (=) B+ Bzl eS¢ ds, .33
[]

Ter(r, 2) = — 28 fsz (A4 —20)B+BEz] e J, (¢) d¢. (34)
[
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4. SOLUTION FOR THE LAYER —h <z <0
The appropriate solutions in this case are
@=[{C+D (z+h)¢} cosh (z+h)é+{E+F(z+h)¢} sinh (z+hm)¢)/sinh ¢h ... (4])
w=[{Cy+D1(z+h)¢} cosh (z-+h)é-+{Ey+Fi(z+H) ¢} sinh (z-+k)¢]/sinh ¢4 ...(4:2)

where

= F19 Dl = - Fy
CH+E +@B~40D;=0,C, +E— (3 —4dn)D =0. ...(4:3)
Problem 1
We have to satisfy the condition (2-1). From (2:13) and (2-14) we have
— 2u¢

G = pop U= n(CotDalz+ME+F)+n(E+FE+h)#)} xsinh (z+h)¢
+{(1—n) (Ey+Fi(z-+h) e+ D)) +n(C+ D(z+h)&)} cosh (z+h)¢] ...(44)

Ty = sir?}l:%ﬁ [({C+ D(z+h)é+F—E\—Fi(z+h)¢} sinh (z+h)¢
+{E+F(z+h)¢+ D—C,— Dy(z-+h)&} cosh (z+h)€]. ...(45)
Since o,, = 71,, = 0 forz = — & we have

E+D—=Ci=0 } ..(4:6)

(1 - 7))(01 +E1) +1C=0
From (4-3) and (4:6) we get

=—=2(-n) Dy, E; = — (1 —29) D,
C,=20—-7DE=( —29)D.

Hence the expressions for the components of displacement vector and stress tensor
are

u(r, z) =f [({D(z+h)£—2(1—n)D1} cosh (z+h)é+-{(1—29)D
— Dy(z-+h)¢} sinh (z-4-R)&)/sinh £z]¢(¢r) d¢ .47
wr,z) = f [({2(1— ) D+ Dy(z-+h)¢} cosh (z+k)¢—{ D(z+h)¢

+(1—27)D,} sinh (z--h)&)/sinh ¢h] £Jy(¢r) d¢ . (48)

O (r,2) = 26 f [({ Di(z-+h)é-+ D} sinh (z4-h)¢

— D(z+-h)¢ cosh (z+h)&)/sinh £h] £Jo(Er) d¢ (49

Tea(ryz) = — 20 f [({DI—D(z+h)$} sinh (z--h)é-+ Dy(z+-h)¢

[

x cosh (z+h)¢) ¢

m] éll(fr) df. ...(4'10)
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Problem 2

The conditions (2-3) imply that

C=C, =0;E=—3—470D; E =3 — 4y) D,

The expressions for the components of displacement vector and stress tensor are

u(r, z) = f [(D(z-+h)¢ cosh (z+h) t+{(3—47) D— D, (z-+h)&}
0

X sinh (z+h) &/sinh ¢h] &1, (ér) d¢

w(r, z) = ( [(Dy (z--h) & cosh (z+h) ¢—{(3 — 4%) Dy+D (z+h) &

0
X sinh (z-+M)&)/sinh &k} &1 (8r) d&.

o«

&
Ou (r, 2) = — 20 f [ i (1D (z+h) 42 (1=n) Dy} cosh (z+h):
o]

+ {D (1~29)— D, (z-+H) £} sinh (z-+h) g)] slo(éryde .

«©

oo (r,2) = — 2u ( ’ [ ST;I;?]; ({Dy (z-+h) ¢=2 (1—71) D} cosh (z+h)¢

4]

—{Dy (1=~2)+D (z+4) &} sinh (z+4) s)] (¢ de

5. REDUCTION OF THE PROBLEM TO A SYSTEM OF SIMULTANEOUS
DuAL INTEGRAL EQUATIONS

Problem 1

.(411)

(412)

L(413)

.(4'14)

We still have to satisfy the boundary conditions for z = 0. The conditions (2.2)

imply that for r > 1, we have

—=p(r)
2

| 1D0—y coth y) 4D e84, (&) de= — [ [A+20—mBIEIendE =
1] 1}

® ® —
f[Dl(H—y coth y)—Dy] &1,(ér) d&:f[A +(1—2m)B] &Jy(ér)dé = T:Q .
0 0

The conditions (2-4) imply that for r < 1, we have
f[D(l —ycothy) + Dy + A + 2(1 — )B] EJ(¢ér)dE =0
0

.. (51)

...(52)

.(53)
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f [D(l + y cosh 3) — Dy — A4 — (1 — 2n)B] &F,(¢ndé = 0
0

-]

f[D(y cothy + 1 — 29) — Dy(y + 2(1 — n) cothy — A)] &4(&r) d¢ =0

0

f[D {2(1 — q)cothy — y} + Dy {ycothy — 1 + 29} ] &Jy(ér)dé =0
0

where y = £h.
From equations (5-1) to (5-4) we have
X=D(1—ycothy)+ Dyy=—4—2(1~17)B
Y=—Dy+ D;(1l +ycothy)=4 4+ (1 — 29) B.

Let us suppose
M= D(ycothy +1—29) — D;(y + 2(1 — n)cothy) — 4
N = D{2 (1—mn) coth y—y}+D,{y coth y—1-+29}—A4—(3—4m)B
From these equations, we have

41l — ) X =N — Iy)N —JO)M
— 41— MY =M — KM — L(»)N.

where

1321

...(54)

...(5:5)

. (56)

. (57)
..(58)

...(59)
...(510)

.(511)
.(512)

10) =0+ 2+ 2% e k() =1 — 2y + %) e™™; L(y) =J0@) =2y e™™.
Equations (5-1), (5-2), (5-5) and (5-6) lead to the system of simultaneous dual integral

equations.

f [N(E) — I(¢h) N(&) — J(¢h) M(£)] & J, (¢r) dé = — P(r)

S or> 1

f [M(0) — K(gh) M(&) — L(Ek) N(&)] £ J, (¢r) d¢ = Tir)
0

f £ N Ja (¢r) dg =0
0

s 0<r<1

f E MO T, (br)dE =0
1]

J

..(513)

(514)

...(515)

...(5:16)
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where
P(r) = 2p)(t —m)
2 1) ("1 ) - (517)
rey =200 = |
Problem 2

The conditions (2-2) and (2'4) and an exactly similar procedure as above leads
to the set of simultaneous dual integral equation (5-13)—(5:17) with the values of
I,J,Kand L as

-2
I(y) = 5" dn (@+y+y)e¥

— 2
KO’)=3——Z7(1’—}’+J72)€-2’

JO) =L(y) = — 202 + b) e=¥/3 — 47,
a=1%(5— 127 + 87%
b=20—=»(1 — 2%).

6. SOLUTION OF THE SIMULTANEOQUS
DuaL INTEGRAL EQUATIONS

We have to solve the integral equations

fg N Jo(¢r)de =0, r <1 (61
f £M(E) Ty () dE =0, r<1 (62)
4]

® )

[t — Keh) N(® — J(eh) M) & Jo (&) d = — P() (63)

° r>1

(1mce) — K(eh) M(2) — L(gh) N@D & Jy (&) dé = T(r) J - (64)

(1]

where I, J, K, L, P and T are known functions and M, N are the unknown functions
to be determined. We shall presently show that these equations can be reduced to
simultaneous Fredholm integral equations of the second kind which are best solved
by numerical methods. However in the case where > > 1 and the integrals

-]

fu" Huwydu, n=0,1,2,...
0
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and similar integrals for J, K, L are convergent, with slight modification of Copson
et al. (see Sneddon 1966) can be used for solving the above set of simultaneous dual
integral equations. Let the trivial solution be.

EN(E) = f n(t) cos & dr, - (6°5)
EM(2) = f m(t) sin & dt, .(66)
with
lim n() =0; lim m(t) = 0. 67
t> o t> e

With these choice of M and N, we see that (6-1) and (6-2) are satisfied while (6:3)
and (6-4) give

() A a O Td
\/,2 —— dr + = f\/tz = rzfn (x) [ dx()f 2I(¢h) cos Excos ét dé dx}
T 1
[w— f 2 J(¢h) sin £x cos & d¢] dx — — P(r) (6T)
d [ mit)
) v dr + 7( 75f\/t2 fm (x) [fZK(.Sh) sin £x . sin £ df] dx
1 d [ &
+0 dr T fn (x) U 2 I(h) cos £x sin &t dE ] dx = T(r) ..(6'8)

From the above equations we have

n(t) — f [n () K (5 )m () ko (1, ¥)] die = == ’-\/’T’_r—z(%_—‘f-i . .69
t

m(t) ~ f [ (x) ks (6, %)+ (6) & (1, 2] e = =2 f/%. .(610)
1 t

where

fI (w) cos & cos 2 W L do

2

__0 __IL ) ﬁ 2 1 ok —o]
2 hs(x’+t)+ 7 (A 6322+ 1% +0 (h)

e ey
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K, :"Ezﬁ f (W) s1nfh§ cos Tdm

Ji
- 2 [Z_Zj L 37}1’4 (x 2+3;=)+ "2 (A 10222 4-51%) 40 (h “)J
2 2 [Kxt K
K, = f (@) sin 2% sin %t dw = — { ——;7—5{— T __;'_5.x_t (x24+2)+o (hA"')J
0
2 wXx wt
k2 i et an o
0
2[ Lyt
?[ }(;2 (5x4+10x2t2+t“)+0 (h~ )]

The above expressions have been obtained by substitution ¢4 = w, writing the expan
sions of sine and cosine function in power series and integrating term by term. The
values of the constants are

Iosz(m)dw; K0=fw2K(w)dw;
[} 4]
1 [ 1 [
I, = Fj‘aﬁf(m)dm; K ——-3wa4K(w)dw;
0
Ingf LI (w)de ; L, waL(w)dw;
[} 0
JoszJ(w)dw; L, =;1 0’ L (@) do ;
o "o
Jl=;——f J (o) do ; 2=.5.1_.f 5L (o) do.
0 0
g =L 51( ) do ;
2= 5y () w) dao ;

[

The constants L are obtained from expressions for the constants J by replacing the
function J(x) by L(x). By a simple extension of the classical theory of Fredholm
integral equations (Tricomi 1957) we can obtain the solutions of (6:9) and (6'10)
as a power series in 1/4 provided # is sufficiently large. . Suppose that n(¢) and m(t)
can be written as

m(t) »= mfz) +""‘(’) ;fz) +. +’”°(’) + 0 (h~) . (611)
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() = nmo(t) + "’(’) ”2(2‘) + . + ";1(:) + o0 (h77). (6:12)
We can determine the values of my(t) and n(t),i = 0. 1,...... by substitution in

(6:9) and (6:10).

P
m@”—* @m

dr.

k

nl(t) = 72‘_‘ Iof no(x) dx

1
nt) = % f [ Iy m(x) <+ Jox me(x)] dx
1

ac

ng(t) = ;2;« f [I (x® + 12) ng(x) + Iny(x) + Jox mau(x)] dx

1

n(t) = 2 f [ I (32 + Dmy(x) + Igng(x) + Joxmg(x) + Jyx (x* + 31%) my(x) 1 dx
™

2 o
n(t) = . f [ L (x* -+ 6x%2 + %) my(x) + I (x* + 12) 1y (x) + Iong (%)
1
4 Jix (x® 4 3t%) my(x) + Jox ms(x) ] dx
2 -]
ne(t) = o f [Ty (x* + 6x%% + 1Y ny(x) + I (52 + %) ng(x)
1
+ Jox (x% + 10x%2 + 5t%) mo(x) + Jix (xF + 31%) mo(x) + Joxmy(x) ] dx.
2% ¢ T(rdr

mo(t) = Vit

my(t) = —?‘- Lot f ne(x) dx

1

2 w
ma(t) = = | [Koxt mx) + Loim(x) 1 dx
1

2
my(t) = ? f [ Koxt my(x) -+ Lyt (3x®+1%) ny(x) + Lytny(x) ] dx .
1
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2 w
mg(t) = x f [ Kixt (x* + tBymy(x) + Koxtmy(x) -+ Lt(3x? -+ t®)ny(x) 4 Lotny(x) ] dx

2 <
mg(t) ~ f [ Kyxt (x® + %) my(x) + Koxtmg(x) -+ Lot (5x* + 10x%% -+ %) ny(x)
1

+ Lit(3x* + %) ny(x) + Lo t ny(x) ] dx.

7. SOLUTION FOR PARTICULAR TYPE OF LOADING AND QUANTITIES
OF PHYSICAL INTEREST

In this section we solve the integral equations (6-9) and (6-10) for large values of h,
by giving a particular type of loading which is important from the physical point of
view.

Let p(r) =p H(@— r),a> land #(r) =0 (71

where H(t) is the Heaviside unit function, then

n(t) = =2 f rP(n) dr
t
~KVg@—f tLa 40 — )
= I 0, t>a where K = — . (72)
and
me(t) = 0. ...(73)

Substituting these values in (6-9) and (6-10), we see that for ¢ < a the integral equa-
tion becomes:

o

) = [ ) Kt %) + m() Kalt, 9] ds = =2 VT, (T4
1
mie) = [ L) K, %) + nx) Kult, )1 de = 0 A7)
1
which give
no(t) = — KVa? — 1% where K =4(_17‘_—”1’___)_£

n(t) = — I—"—f [7\'a2 — 24% sin™! (% )— 2vVa® — 1]

nft) = — FlﬂozK(a—-l) [1\'a2 — 24° sin~? (%)—- vat =1 ]
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nt) = — %IIK[ILG Grat — 20t sint (L) 2@ -y ve - 1)
+—§(1\'a’—2a2 sin-1 (%)—2VFJ)]
__< )I., (a — 1)* [ (7\'a2 — 24® sin! (-2)—2\/1;2—?1)]

nlr) = — 20K 2 — ) [4 ( ma? — 26° sin~* <%>‘ 2‘/52-:)]

-‘}M_thz(a_ 1) [_jf <7\'az—2¢z2 sin~? <%>_2\/‘1T;“1>]

w2

41011 (@ — 1)[ 3mg* — 24t sin™? <é>_ 20— ) Vo —1 >j

410111(

(@ — 1)[16< 3ra® — 24* sin™? < >- 2Q —-ad) Va* — 1)

_ <%> 14K (@ — 1) [%-(mzz — 2a? sin™? <%~>—- 2vVat =1 >:

31‘21'4,J,,K(a"—1) [ (na2-2a2s1n‘1< )—2\/a2—1>]

nlt) = — 72; [zK[gl—6<37\'a" — 2a®sin-? (71- >—2 (8 — 50a% + 69a%) \/Ef:1>
+ 2 (mat —2asin=1 (L )20 - o va—T)
+ ZIF t‘(ﬂaz — 2a? sin"‘(-‘l;)— 2\/a—2_:-1>}
- (%)81(31,1(@:-— 1 { 0—3——37-—-1 + t*a—1) }‘

1 . 1 —
x{ -Z(mz“‘—za2 sin~1 (F)—Z\/az—l J*

2l (a — 1 2\ — — 1
- __0_07‘\.___) na (£) __(_;) LoJoKI, (_‘i.__lll_(zfi___)

X (na’ — 2q® sin~! (%)—- 2vVa® — 1)

ml(t) =0
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mo(t) = -~ —%2« LKt [%(Kaz — 2a® sin™? (%)—- 2Vt -—7)]

mat) = — (—7% >2 LLoK? (a — 1)[~i-(wa2 — 2a%sin1 (%)— 2 \/(?_—“1)]

my(t) = — — ! L1K [16(37\'(24 2a4$m"1( )——2(2—a2)\/a2—1)}
LK [L(Bmﬁ — 24% sin™? (L)'— 2 ‘/‘17:—1)]
™ 4 a /s

- (—i ) LolaKi (@ — 1)? [i(amﬁ — 24 sin~? (l )2 x/aT—_1>]
[ <37\'a2 2a® sin™?! < >-2\/a2— I)]
— (%)2 IKL;t { @ — 1+ @—1) }
%—(37&12 —. 2a? sin™? (%)- 2 \/aT:—l) }
— <-12?>2 LolltK[(a -1 4[116( 3nat—2a*sin~? (%>~2(2—a2) \/E‘Zl)}
() { e (3) o) |
2\ 1 : 1 —
_ (?) I3K (a — 1)° [T(.’maz — 2a? sm‘l(T{)— 2V — 1)]

Thus the iterative solutions for m(f) and » (¢) are

my(t) = —( ) KoKtLy @

n(t) = "7% K [\/az — 12+ ay + ayt? - azt“] + o(h™%) ...(76)
m(t) —7‘.2‘ K {bnt + byt® + bztsz‘ + o (h7%) (7D
where

4 n
ap = (%;)IOA, n2=0 (i—%) (a — 1)]
21, 21
() (Ee- - -

(equation contd. next page)



DISTRIBUTION OF STRESS IN THE VICINITY OF AN EXTERNAL CRACK

- °>(a 1) ~

24
e

212

N /
i il 4o e - R . ~a
- (7\'/1 (W \/ 34 {] ST wh (@ l)\% G =0t
>11,<1 “ﬁ’><1 :’1“\( hha, YaCoay
\ h \mh .o/ i? )
ay = (:’[“2’ VA - O
2 2 2N 3 )
hy == < :\,7 >Lu A ( ”‘},’{:: J A ,%u \7‘/’1) (U [B] - 7‘;}& LiAs - EE.; LAy
N2 ¢ CoT ( 14 3
<2 y ALA“;ﬁ ["Ll..i”__j"_”ﬁl_"_[“;_[‘_”‘.]_o)‘\)(a_ (- 1
n o/ U Y] Ty ™ 3xh ]
T 2N (U - ” Lnll} ; -
= il Ly ~ 24+ 0 (Y
( ” \ A Y? (
2 10L,4. DNPLLiAyT . (e — 1) Li(a—1) .
R e st - —1)—0 (b~
k T Th" ( Ll ’ he 1 i1 nh ;(a ) S
)
by = _-<f£=\ 4, - O ()
,6
with
4, = <—1>{ na? — 2d* sin™? <—l \ WV o ] ' ...(7-8)
4 /] a/ i
. 1 .
4, :(%) [3wa4 — 2at sin-? (a> 22— @) v 1 . (79)
g =( 1 [37va“ — 248 sin~1 (l) — 2 (8 — 50a® - 69a4) 4/57 1} (710}
96 a
The values of the constants for the Problem I are:
{y - 1-500000 Jo = 0750000 Ky = 0-750000
L= - 1-250000 Jy = — 0625000 Ky = — 0625000
= 0-656250 . = 0-328125

1329
21,2 .
ﬁ) (a — 1) jAz

LoJoAy
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(I) Normal component of stress

The left-hand side of (6'3) is the value of o, (r, 0). Making use of (6-3) and
(6-6), we get

1 !
[O‘H % 0)] - n( ) V- 1’21(3 72 dr
0<r<1
W wx wt
T o f \/12 ] f,,(x) w I(w) sin ~ cos du dx

M in 2 aw d
T 7\'h f\/tz . v(m(\)w J(w) sin P sin . .

Putting the values of n(r) and m(r) and after simplification we get

l[o,(r,O)] S Tl T 2l G (cz_: {,)&
2K VI — 2 at — r*

0<r<t

1 2, ( 2 .
talnp+2{s e -morel [vite

1
toenrtqpn{etgra-m] |Vite o gro.on

where

I . .1
D=A, 4 (a— 1) a + —?(ad—l)al—f-g—((ﬁ— 1) a,

1 5 .
E=A2+?(a3—— Doa, + %(a“—l)a,,+-;ﬁ(a’~l)a._,

(—nm+}w—nm+%W—nm

&)
f
p— N[)—-

(a‘——l)b,,—‘—»(a‘f l)b1+—}§(a8—1)113.

(I1) Shearing Stress

The left-hand side of (6.4) is the value of T,, (r, 0). Putting the values of M(¢),
N(¢) and in turn that of n(t), m(r) and after calculation we get

n _botbi+by, L[ 3Ky
|7 (00| =TT [
0<r<l
Kr T Vi—r | e
1 4 2L, § 2 | — _
+7€E[L.,D+ l{?(4—r2)D~.6E}}\/l—r2+0(h“)
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where
1 1 1
=~3—(a3—1)b0+?(a5—1)b,~i--7-(a7~1)b2
! =\% (a® — 1) by + % (a7 — 1) by +‘—;- (@ — 1) b,. (712

(III) Stress Intensity Factors

Expressions for stress intensity factors are of great importance for workers in
fracture mechanics. These expressions are defined by

P = 111{1 (=t o, 0Lr<1] .(713)
T = l_l>r¥1 (1 — T, (r.0O)}r <1} (714)

By substituting the values of &, (r. 0) and 7,. (r, 0) in the above equations, one
can easily demonstrate that

el !
AR .(T15)

T m(ly+0Q)

—
_ 3
t= WV E It mtatal + 0G|
\ . (716)
T:sz[bo+b,+b2]+0(h"7). ]

From the above expressions the stress intensity factors can be calculated for both
the problems.

(IV) Normal Component of Displacement

From the results given in Section 5 it is easy to derive that

21 =1 or 0) = [INQ = m+{0—m) (A +2¢h) + &1} e
[}

+MG—1—{G - —-2¢h)— Er} e 2H Ly (Er)de ..(T1T)
Substituting the values of M and N from (6-5) and (6:6) for 7 =} we have
L (a@)d
8(0(", 0) = 4]\/—'.7.:—’—5
1

+ f(61t2 + 28 — 1) e2¥ J,(¢r)sin &t dé
0

+fn (0 de [(65° + 4k + 2) et gy (¢7) cos &1 dt (T18)
. :

V]
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forr> a

87 / @ — 12\ @y - at - oagti
'k’ w(r,o) [:\ (r"—tz) - \/°~IZ _d

1 : d 2 1 4 —p g AT M
-+ 7 fm(t)f (6u v — 1)e Jo ( b—) sin - du dr
1 m ’

. {n(z (eu- Lo 2) 02 g, (%’i\ cos l/‘;‘ de di

= %‘LlL-g + '%""Al —_ 4_3‘2 ("2A1 + 2/42 -+ rzL + 21’1’1)
i - i

- 15;2” (3rL + 24r* M + 8N) + O (%) L (719)

andforl <r <a

f

87 B fat — 1? Ay + ayt® -+ agtt
20 (,0) _f{\/(rg - 12) + AT } di

1

n %fm(z)f(w L 2u — 1) em2t g, (’;li ) sin (l/‘]i) du di
1 0
Ifn(t)f(@ﬂ - 4#—{-2)6“’/‘]0( ) ( )dﬂdt

3 3
=L L + 5 4, — 4;,2 (rPAs + 24, + P L' + 2M")

— (3r* L' + 24 M' + 8N') + O (h~) ...(1-20)

1
" 536/

where

.3
Ly =a+ 5 ayri —~ % U4 rl

L, = sin} () sin-! ( L)
r r )

L —aViA 2 - Vi
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Lo =V — @@~ 2% — Vit - 1%~ D)
Ly =Vrt— @@ - @) - 08 (2 — @) + 66 — ViE — 1 {(r® — 1)
— 200 — 1) -+ 6}
Le =[a(r?- 2a)VriE —a® {r - 202 = 284 — (-2 Vit
X Art — 2 (rF — 221

/. —=L;L,+ %(al ) Ly + = ay Ly

1
8

b R ,
A = dy ‘—i )"'Lz ‘f‘Lg ‘i—al(—g’ r LQTTI"L;),”T“S—‘L.; +A’1

N = agly + ay Ny + asNs

I 1

1\/1 == 33 !’ lOICL; - ]5] 4.L3 T I_L4 — g L.’)}

S )
1\’2 == ﬁx ! 35rbLg - 56"61,3 + 28"‘L4 - 6 rst + LG }
L) = L3 g

v TE Gy 5 avs =- |
Lo == ;]2— ™ - sin"l(-;‘—>

i
L= I—'l' LZ' """"" (al an a"’ﬁ) \/’ — 1 — § as \/r — 1 (I‘ — 2)
TTp— r3o, 2

M = a T"sz“Vl"—l + a 1!‘8—rL2-— rEvret — 1

N' = — dy '\/"2 - 1 -+ a,Nl' -+ agNz’

N, = ;ﬂ ho;‘iL2 15k vVt — 1 -3¢ r-(r -2Vt -

— %\/r2 — 1 ((1-2-- 12-20(r2—1) + 6)]

V'=“§ l35r8L2 +36r VIR 1 — 28 (12 - )V — |+ 31'2

X ((r2 — 12 =200 1) + 6)— =2 Vg T {rt — 202 — 2)2}}-
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(V) Crack Energy
Another quantity of physical interest is the crack energy W. This is given by

W= — 21rfr 043 (r, 0) © (r, 0) . (721

1

In the present case o, (r, 0) = p . Hence
W= - ’L‘”—K[ fm(t)fé 1 [% —m—{G =M - 2¢h) — 2hY e

x J, (ad) sin & dedt + afn(t) fﬁc“lrl—')+{(l—~n) (1+2¢ )+ £2h2) =250
J7

1

x Ji(a ) cos &edédt — f m(t)fi”1 r%-—'l—‘{(%—n) (1 —=2¢h)—£h?} e~ %0

X Jy (8) sin & dédi — f n (1) f 3] 1 =t {(1 —1) (14+-28R)+ 242} e~

X J1 (&) cos &t déde } ...(722)
For % =%, we have
8 —=)p* (1 .
W= = w(h> - (723)

where

w(711“)=Il+12+13+14_"15_'-[8_17"“18

I = %afm(t)ff" Ji(ag)sin ¢t dedr
1 0

I = — _i_ e f m (2) f £1(6 ER2 Eh— 1) e~ J, (a £) sin & dedr

a

I, = — %-af n(t) fﬁ" Ji(a €) cos £t dédr

1 0

a

I, = —%afn(t)fé“@ Eh+4th+2) e ] (aé)cos ¢t ded.
1
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The integrals ;I3 can be obtained by putting @ = 1 in the above integrals.

For the numerical computation of the inner integrals in I;-I,, we shall use the
following results given in Sneddon (1951).

fé’-"‘ sin £1 Jy (¢a) d¢ =allt+(*—a*], t>a
0
=t/at<a
*,ff‘l e (adsin ttdt = L(t — Rsin i)
. a 2
U
fe‘zﬁ" Jy (@ &) sin ¢ d¢ S t cos . 2 hsin Ld
g ) aR 2 2
i\
a . s a . 3¢
j(éJl(af)sméte S d ¢ :Fsm >

[0}
{g-l e~ J, (af)cos £1de = 711— (Rcos} & — 2 k)

o

; . 1 1 . ¢ é
— 2k & £ - — = — —_— —_
»je Jy (@ &) cos ¢t d ; TR (t sin 3 2hcosz)
o a 3
fée Bl (adcos frde = B 5
4]
where
Rt = (2% + 4h* — %) + 16a%h%t*
a® + 4h? — 2 = R%cos ¢
4ath
—_ 2 <1 —_ —
4ath = R*sin ¢, tan ¢ = FI A

8. NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

The formulae derived in the last section are of value only if 1/A is very small.
When it is only slightly less than unity the simultaneous Fredholm integral equations
derived in Section 7 have to be solved numerically.

Computations were carried out for values of & ='1-05, 1-1, 120, 1-30, 1:6667 and
a =120, 1-60 and 2-0. The kernels are computed using Gauss-Laguerre quadrature
formula. The integral equations were solved using the method of Fox and Goodwin
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(1953). Using these values of m(t) and s(r), we can calculate the normal ccmponent
of displacement. The variation of w with / and a are shown graphically in Figs. 2-4.

1.0

[e]
@

A

) 4

F16. 2. Variation of @tr, ® withrand hfora = 1-2

h=1.05

h=dd

0 2 14 16 18 20

F1G6. 3. Variation of (r, 0) with r and 4 for a = 1-6.
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L

H

L

416

1.6

____,.k

20

Fi1G. 4. Variation of w(r, 0) with r and & for a - 2-00.

The results regarding the variation of stress intensity facter are
The results are compared with those of Dhawan (1973).

-

174
133

shown m Fig. 5
We find the following:

TABLE 1|
{a = 1-6)
h 1-05 1-1 j-2 1-3 15 1-666 24 2-4
For crack in
plate 7-3743 6-7108 4-4786 3:6980 2-6902 2-1241 1-6404 1-6204
For crack in
semi-infinite
solid 7-0231 6-3912 4-2653 3:5219 2:5621 2-0239 1-5623 1-5432
TaBLE 11
(a = 2:0)
h 1-05 1-1 1-2 13 I-5 1-6667 2.0 2-4
For crack in
plate 8-4677 7-5507 4-8568 4:0575 3:1963 2-6882 2-1535 2-6034
For crack in
semi-infinite
solid 7-9231 7-0567 4-5391 3-7921 2-9872 2-5123 2-0126 1-8721
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8.0,
70!}
60/
sof
QA
a0l
30}
aA=2.0
20t —i
a=1.6
Vet
a=1.2
1o}
0 iz 14 18 20 22 24

18
—f

Fi1c. 5. Variation of normal stress intensity factor with A.

These results seem to indicate that the semi-infinite solid has a little effect on the
stress intensity factor. The computations of o,, employing (7-11) also confirmed the
results tabulated above. We found that the magnitude of stress decreases by about
7 per cent for @ = 1-6 and about 5 per cent for @ = 2-0. For values of a> 4 -the
decrease was almost negligible. Further on comparing the results of this paper and
that of crack in a plate (for # = 2-5, a = 2:0) with those of crack with cylindrical
cavity (Srivastava and Lee 1972) and without cavity in an infinite medium are :
1-8723, 2-:0034, 1.7562 and 1-7321 respectively.

Using the values of m(t) and n(z) and the result (7-23) we can calculate W, The
variation with A and a of W is shown graphically in Fig. 6.



DISTRIBUTION OF STRESS IN THE VICINITY OF AN EXTERNAL CRACK 1339

t
100}
80}
x>
S
L% 60F
iy
D sl
20¢t
i -t I ) I a
0 12 14 16 18 20 22

— 4

Fi1G. 6. Variation of crack energy with /r and a.

It is of interest to compare the results of this paper with those contained in the
paper of Lowengrub and Sneddon (1963) and Dhawan (1973). A comparison of
diagrams shows similarity in the results.
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