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The purpose of this note is to define a generalized quasi-convex sequence and
study some of its applications in the theory of summability and Fourier
analysis.

§1. Given a sequence {a»} we write A dn = an — Gnyy, A™an = A (A™1an)
with A%a. = as, where mis a positive integer. The sequence {a.} is said to be
convex if A%an 2> 0. It is well known that if {a.} is bounded and convex, then

0
Gy, nN\an—> 0, n—> co and T (n + 1) A%as < oo.
1
For other interesting results reference may be made to Chow (1941), Pati (1954, 1962),

Prasad and Bhatt (1957), Bhatt (1962) and Mazhar (1966a, b).

A sequence {a,} is said to be quasi-convex if
[e0]
S+ 1] A2as| < oo ..(1.1)
1

It is clear from the above result that every bounded convex sequence is quasi-
convex. However, the converse need not be true. Contrary to what we have for

convex sequences, a null quasi-convex sequence {a.} need not be monotonic decreasing.
It is, however, of bounded variation and it satisfies the condition

nAa, >0, n— oo,

The concept of quasi-convex sequence was recently generalized by Telyakovskii
(1973). According to him a sequence {an} is said to belong to class S if

(i) Gn —> 0, h = oo,
. 0
(i) there exists a sequence of numbers {4} such that 4x {0 and %‘. Ax < o0,

(i) | A a | < Ay for all £.

[0}
Taking Ay = = | A?am | it follows that a null quasi-convex sequence {an}
m=k

belongs to the class S. The converse is obviously not true. In view of the
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conditions (i) and (iii), it follows that every sequence {a.} of class S is of bounded
variation and thatn A g, — 0, as 7 —> oo,

In this note we propose to obtain a more general class by introducing the
concept of 3-quasi-monotonicity. A sequence {d.} of positive numbers is said to be
quasi-monotone if A b, > — abs/n for some positive «. It is obvious that every
null monotonic decreasing sequence is quasi-monotone. The sequence {bn} is said to
be 8-quasi-monotone if bs — 0, b, > O ultimately and A bn > — 3., where {3,} is
a sequence of positive numbers. Clearly a null quasi-monotone sequence is 8-quasi-
monotone with 8, = ab./n.

A sequence {a,} will be said to belong to class S(8) if

(@ an—> 0, n—> oo,

(b) there exists a sequence of numbers {44} such that it is 3-quasi-monotone and
w©
2 A, is convergent,
1

©) | Aan| <] dn] foralln.

It is obvious that @, € S = ax € S(3).

The concepts of convex and quasi-convex sequences have been applied to
various types of problems in different branches of Mathematics, such as Theory of
Summability, Fourier Analysis etc. In Section A of this note, we shall study an
application of the generalized quasi-convex sequence to a problem in the theory of
absolute summability factors, while in Section B, we discuss its application to a well-
known problem in Fourier analysis.

SECTION A

e 9]
§2. Let X an be a given infinite series with s, as its nth partial sum, We denote
1
o 0]
by t the nth (C, 1) mean of the sequence {na,}. The series T a, is said to be summable
1
o
. [ ta | ¥
|Gl k21, if )y <ee (Flett 1957).
1
Generalizing a theorem of Pati (1962), Mazhar (1966 b) (see also Mishra 1965)
proved the following theorem :

Theorem A — If

[+ 0]
A®As > 0 and z i‘nl < oo 2.1
1
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and

m
z ' 12— OGogm), m—> o, k> 1 (2.2)
1
[¢ o]

then the series £ anhs is summable | C, 1 | z.
1

Later on, Mazhar (1972) proved a more general theorem in which he replaced
the conditions (2.1) and (2.2) by the following :

oo
=0, Znlogn| A2 | < oo ...(2.3)
1
m
|t | *
= O(log m), m — oo. (24
1

It is known (Pati 1962, Mazhar 1966) that (2.1) = (2.3) and it is easy to show
that (2.2) = (2.4). In this section we propose to show how condition (2.3) can be
further relaxed by using the concept of generalized quasi-convex sequences. Our
theorem is as follows.

Theorem 1 — Let X = 0, n—> oo, Suppose that there exists a sequence of

o0 0
numbers {4z} such that it is 8-quasi-monotone with  nlogn 8, < oo, X Az logk is
1 1

[e 0}

convergent and | Ade | < | 4x | for allk. If (2.4) holds, then Z asd. is summable
1

l C’ 1 l k.

To show that condition (2.3) implies the condition of our theorem we can take,

o0
for example, 4x = Zk~ | A%2a [ -

n=
§3. We need the following lemma for the proof of Theorem 1.

Lemma 1 — If {b,} is 3-quasi-monotone with £ n log n8, < oo and I b, logn is
convergent, then

mbnlogm - 0, m—> co ...(3.1)

Znlogn| A ba| < co. ...(3.2)

The proof of this lemma is similar to that of Theorems 1 and 2 of Boas (1965,
case y = 1) and hence omitted.
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§4. Proof of Theorem 1 — By partial summation

n n—1 v n
To — 1 1
"= AT va,Av=mZAz\ozrar+ 1Zra
1 y=1 r=0 r=0
so that
n—1

=0[$ we ( ;iAAvi(v+l)ltul)k]
+0[Z

m n—1 n—1
=O0[Zn*1( Z v|A4o] |t]|®)( = v | 4o | 1)
1 =1 v=1

o315 ]

3

— N 2 , It l®

OL-IZn 2 le][tl]—I-O[z ;[A,,]]
=o:§;vmv[l’—;ﬁ]+o[§u,|gi’2_"‘]

~0 mz_lA(lenZ"' +m1Aiz""”]

+ 0] EllAullogv]

m—1
= 0] §1 (|do | +v| Ado]|)logy]l + O(m | An | log m) + O(1)

by virtue of the hypothesis and Lemma 1.

Remark : Following the analysis of this note we can obtain a more general result
in which log » is replaced by a positive sequence {x,} such that it is non-decreasing and

o = = 0(22).
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SecTioN B
§5. Let us consider the trigonometric cosine series

[o.o]

521 + z an COS nx, (5.1

n=1

If aa {0, then this series converges to a function f(x) for all x except possibly
at x = 0, Itis well known (Zygmund 1959) that the condition of monotonicity alone
does not ensure the L-integrability of f(x) and consequently (5.1) cannot bea
Fourier series. Young (1913) proved that if {@.} is a null convex sequence, then the
above series is a Fourier series of a non-negative function. Later on, Kolmogorov
(1923) observed that for the series (5.1) to be a Fourier series it is enough to assume
that {an} is a null quasi-convex sequence. These results were subsequently generalized
by Telyakovskii (1964, 1967) and others. The conditions imposed on {a.} were,
however, quite involved. Recently Telyakovskii (1973) proved another theorem which
is as follows :

Theorem B — Let a, € S, then (5.1) is a Fourier series and the following
estimate is valid :

T [ve] o«
j %1’— + ancosnx|dx < C E Ak,
0 1 0

where C is an absolute constant.

It was shown by him that Theorem B can be deduced from his more general
results obtained earlier. He has also observed that his result is equivalent to a
theorem of Sidon (1939). However, his result (Theorem B) is interesting in the sense
that conditions on {a»} are simple and can be verified easily.

In this section we propose to obtain a generalization of the above theorem by
introducing the notion of 8-quasi-convex sequences.

We prove the following theorem,

o«
Theorem 2 — Let a. — 0 and {4} be a 3-quasi-monotone sequence with X n3, < co.
1

o} «Q
Suppose ¥ 4y is convergent and | A ax | < | 4x | for all k. Then a,/2 + Z an cosnx
1 1

dxgc;;,m.

is a Fourier series and

]

o0

a
~—2°—+ z a, Cos nx
1




ON GENERALIZED QUASI-CONVEX SEQUENCE AND ITS APPLICATIONS 789
The following lemmas are pertinent for the proof of our theorem.

Lemma 2 (Boas 1965) — If {a.} is 3-quasi-monotone with T n”8, < oo v #0,
then the convergence of Z n”* a, implies that n7a, - 0, n — oco.

Lemma 3 (Telyakovskii 1973) — If the sequence of numbers {x} satisfies the
condition | «; | < 1, then

;[r} b a.D (x) | dx < C(k + 1),

i=0

where Di(x) = % + cos x + cos 2x + ... cos ix.
[e e}
Proof of Theorem 2 — Since = Ai is convergent and Az > 0 ultimately, it
0

o
follows that X | Az | < oo, From the hypothesis, £ | A ar | < oo. Therefore, by
0

[e 0]
the well-known result, a,/2 -+ X a, cos nx is convergent for all x except possibly at
]

x = 0. Hence in order to prove that it is a Fourier series, it is sufficient to establish
Lebesgue integrability of its sum-function.

Now

[« o}

o0
521 + z @, COs nx = z A anDu(x)
0

1

by virtue of Lemma 2 (y = 1). Hence in view of Lemma 3

T o0

X];J—i— Zancosnxldx

0 1
o0 ™

<D o= e [ M’";’jl‘i’
0 0 m=

[+ o] s o]
SCZE+ D dn— Aoy | = CZ @+ D | An— dusy + 30— 5|
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a0 e o]
<CZ(A,.—A,.+1+8,,)(n+1)+0208,.(n+1)
0

=C

oM

[+ 9]
(dn — Any) (n + 1)+2§(n+ 1) 3n
o
<C3I |4
0

o 0]
since X nd, < oo.
0

This completes the proof of Theorem 2.
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