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In this paper the author has studied the affine motion in a recurrent Finsler
space and obtained many important results.

1. INTRODUCTION

Let us consider an »#-dimensional affinely connected Finsler space Fn (Rund
1959) with a positively homogeneous metric function F(x%, &%), (i=1,2,...,n) of
degree one in its directional arguments i*’s. The fundamental metric tensor

gi(x, %) of the space is given by

def . .

gii(x, &) = % 0i0s F¥(x, %). ..(1.D)
Let T; (x, %) be any tensor field depending upon both the positional and direc-

tional arguments. The covariant derivative of T; with respect to x* in the sense of

Cartan is given by

Ti

itk

=T} — onT, Gy + T, T% — T, T%' (1.2)

where I‘,’f; (x, #) are called the Cartan’s connection coefficients and satisfy the

following relations :
(a ar¥s#=0 - (o) TN=TF- (13)

Involving the above covariant derivative, we have the following commutation
formulae :

3" T;, T (a"'Tfi )ik = T; 38F:: - T: 351‘:,: ..(1.4)
and
i A i N 3 gt P
2Tu[u] = a'T; K:hk #4+T K, — T, Ky, ...(1.5)
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where
itk

def ‘ . i s i .
Ky, (6 = 200uly — &:Th, Gy + Dl Tig) (L6

is a curvature tensor and satisfies the following identities (Rund 1959)

K = — K k)
and
Kif!kll + Ky Khilflk = *s{(g’PrTji)K;kz
+ BTE) KL, + (@075 ) K- .(1.8)
If the above curvature tensor K,f,k (x, &) satisfies the relation
K. =1:Ku ..(1.9)

where y,(x) means a non-zero covariant recurrence vector, then the space is called a
recurrent Finsler space.

Let us consider an infinitesimal point transformation
T o= xt 4+ vi(x) dt ..(1.10)

where vi(x) is any vector field and dt an infinitesimal point constant. The above
transformation considered at each point in the space is called an affine motion, when

and only when, we have

LyTH =0 (1.11)

k

where _[v denotes the well-known Lie-derivative with respect to the infinitesimal
transformation given above. In view of (1.10) and Cartan’s covariant derivative the

Lie-derivatives of T, : (x, #) and connection coefficient I‘;"k' (x, %) are given by (Yano

1957).
DT D =T, + T, — T+ T Foar o L(L12)

and
LyTE (B =V, + Kju ™ + 0TH V), # ..(1.13)
respectively.
We have the following commutation formulae :

WLy T)) — LyonT, =0 (1.14)
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(LyT3) e — (LyTi) s = Lv Ky, + 2800,Th, T, .(1.15)

k]s
and
(Ly T;;cll) — (L Tjik)” = Tdk Ly lei - Tsik Ly P;;s - Tjis Ly P:l‘ *
...(1.16)

Hence, for an infinitesimal affine motion (1.11), the two operators _[v and |k are
commutative with each other. Remembering the equations (1.9) and (1.15), we get

Ly Ky, =0. (1.17)

Taking the Lie-derivative of the both sides of (1.9) and noting the equations (1.11),
(1.16) and (1.17), we obtain

(Lvys) Ky, = 0. ...(1.18)
Consequently, if the space is non flat one, (i.e. K,f .« 7= 0), we have

Lvys =0 . ...(1.19)
i.e. the recurrence vector v, of the space must be a Lie-invariant one.

In what follows, we shall study a recurrent Finsler space admitting an infinite-
simal transformation ¥ = x* 4 vi(x) dt which satisfies (1.19). We shall call such a

restricted space, for brevity, an SRFn-space.
2. THE VANISHING OF _[v K, (x, #)
First of all, let us prove the following :

Lemma2.1 — In an SRFn-space, if the recurrence vector vys is a gradient
one, we have vy,»* = constant.

Proor : For brevity, let us put
vV = P(x) .(21)
then with the help of eqns. (1.12) and (1.19), we get
LV = Yo ™ + Ym?] - (2:2)

In view of the assumption Ys;m = Yms, we have y,m = 0. This completes the
proof.

By virtue of eqn. (1.12), the Lie-derivative of the curvature tensor field K,fjk (x, %)

is given by
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S
has l 13

LvK,, Kh!klsv + K Vin T Ky ¥ oK

- Khﬁc 18 + a" h[k v & ...(2.3)

which in view of (1.9) and (2.1) reduces to

3

..L’V K}:jkr—— hjk+K lh+ hsk !j+ MS lk
= Ky Vi, + 0Ky V) o (2.4)

Applying the commutation formula (1.5) to the curvature tensor field mk (%, &),

we get
2Khilkl[mn] — 0K, we Ko #° + Ky K,
— K., K. — K, K& — K;’j, K. .(25)
Remembering the definition (1.9), the above relation yields
(Ymin — Ynim) K;.i,k — 0K ;,,k K, .. %
+ K, K. — K. K —K K  —K. K . (2:6)

Next, let us assume that p is not a constant. Then, from the Lemma (2.1), we
can see

an(X) (‘Ym In — Yn| m) -;é 0. (27)

If we take a suitable non-symmetric tensor t=», which satisfies the relation

K&'

hmn

e = viI A ...(2.8)

then multiplying (2.6) by't""' and summing over m and n, we obtain

8
[

K}

- [ 4 H
e Mmal™ = — 0:Kp Vl & — Ksnc in— K V

Khas e+ K m Vi ...(2.9)
Comparing the last equation with (2.4), we get
LvK,, = (p — ™M) K, ...(2.10)

which vanishes when and only when p = ™M,
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For p = constant and Mms 3% 0, from (2.4) and (2.6), we can construct the
following indentity :
Mun LV K, Mk h:;k (p smn M"‘"v'! 8 )
8 i
sik (P hnm M"'”vlh) - Khsl (pK:mn - anVf,.)

~ Ky, 0Ky — M) — 3Ky (0K — Maw?" | ) #°.
(2.11)

Thus, for 'ka:lik = 0, from the above equation we can easily obtain (Takano 1966)

oKuy = Manv,, (2.12)

where v' does not mean a parallel vector.
Thus, we put the

Definition 2.1 — An SRFn-space satisfying y,,v» 7= const. is called a special
one of the first kind.

Next, let us back again to the ymv™ = constant of the foregoing Lemma .1).
Then (2.6) is replaced by

KS

hmn

— 0.K' K — K

hik “Tsmn # + h!k 3m 53k

— K K. — K. K. =0 .2.13)

hsk his

Mutltiplying the last equation by ¢ and summing over m and n, we get

i i 3 H s
ar h:k x—[— — K v|h_K y

’Uk | s 8ik hsk " 1§

—KMs |k+ Mk =0 -..(2.14)

where we have used (2.8).

Introducing (2.14) into the right-hand side of (2.4), we obtain
Ly Ky = oKy, - ..(2.15)

Hence, when the arbitrary constant p vanishes, we have (v K,, = 0. We put the

1

Definition 2.2 — When v™y, = constant holds good, an SRFn-space is called
a special one of the second kind.

Then, summarizing all the above results, we have the following theorems :
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Theorem 2.1 — In a special SRFn-space of the first kind, if the space has the

resolved curvature tensor K,f,k of the form (2.12), _Lv K, » = 0 bolds good.

Theorem 2.2 — In a special S_R Fn space of the second kind, if the arbitrary

constant p = ymv™ vanishes, we have Ly K,:,k = 0.
From the last theorem when Ay, vanishes i.e. Am = 0, we can also deduce the

Corollary 2.1 — In a symmetric Finsler space (i.e. Knpio =0 LvKy, =0
holds identically.

3. CoMpPLETE CONDITION

We shall find a necessary and sufficient condition for (2.12). From the assump-
tion (1.19), we have

.fVYm =Ym;svs + (sts)Im -—-y;,mvs =0 ..(31)
which by virtue of (2.1) and (2.7) reduces to
pim + Mmsv = 0. ...(3.2)

Tn view of eqn. (1.12), the Lie-derivative of Mma is given by

LV Mun = Mumn s + MoV’ + Ma'| . ..(3.3)
Remembering the commutation formula (1.16), we get

Lv(ymin) — (LVrm) o= — YsLV Ty ..(3.9)

which by virtue of the equations (1.3b), (1.19) and (2.7), reduces to
Ly My, = 0. ...(3.5)

Differentiating (2.6) covariantly with respect to x* and using the equations (1.4), (1.9),
(2.6) and (2.7), we obtain

Mumn sKl:nc = Y"M'""K':Jk + K;ﬂm &% Khz;k osT f:
- szik 3’ P;:: - Khipk 3'F;p - Klfn 3.;-..[‘::}. ...(3.6)

Transvecting the above equation by & and using (1.3a), we get after a little
simplification

Mun 1s = 'Ystn- ...(3.7)
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Thus, with the help of the eqns. (3.3), (3.5) and (3.7), we obtain
oMun + MV, .+ Mu'| = 0. ..(3.8)
Next, from (3.2), we get
Prmm — Pram = — (Mms¥*) s + (MnsV") | m ...(3.9
¢ being a non-constant scalar function, this becomes
My 4+ MV = — YaMm® + ymMagv --(3.10

where we have used (3.7) and Mu; = — M. Introducing last relation into the
left hand side of (3.8) and using eqn. (3.2), we get

PMrrm = — YnPim -+ YmP | n. .(311)

In view of equations (1.7) and (1.9), the identity (1.8) in an affinely connected Finsler
space reduces to

= YkK‘ b — Y;Ki Vi .(3.12)

hiL Rkl

pK;ik
Hence, from (3.11) and (3.12), we can make the following identity :
oKy, — Mu v, ) = vilpKy, v — p13v),)
— YKy V' — 0157 ,). ..(3.13)
Consequently (2.12) follows when and only when
oK) v — oV, =YiC, ...(3.14)

where C,: means a suitable tensor, Multiplying the last relation by v and summing

over j by virtue of K,;g vivt = 0, p, 5 = 0 derived from (3.2) and (2.1), we get

pC, = 0. ...(3.15)
Since p 7 0, therefore, the above relation yields

C, =0, .(3.16)
Therefore in view of (3.16), the equation (3.14) reduces to

Koy v+ ey, =0, (s =p15 | o) (317

In this way we have
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Theorem 3.1 — In order that we have (2.12), (3.17) is necessary and sufficient.

Now, the last condition (3.17) suggests the concrete form of the tensor ¢»(x, %)
used in the first half of §2.

In fact, being ¢; 3£ 0, there exists a suitable vector £ such that
pmE™ = L. .(3.18)
Then, by virtue of the above relation transvecting (3.17) by &, we get
v, = Ky viEL ...(3.19)
If, we introduce t™n by
tmn — ymgn ...(3.20)

then
antmn = anVmE" = PI"E" = P'P"E = p‘”

That is from (3.17) and (2.12), we obtain
P = ant"m ...(3.21)

straightway. Therefore, (3.20) can be taken as concretely. Hence in order to have
the concrete form ¢mn, (3.17) should be taken as a basic condition in our theory.

If this is done, we are able to have (2.12) always, so _[v Khi’.k = 0 holds good. Thus,

we have the next

Theorem 3.2 — 1If v‘,h will be introduced by (3.17), _[v K,fu =0 is satisfied
identically.

4. APPENDICES

In a SRFn-space of the first kind, we shall show the existence of affine motion.
For this purpose, let us take up (2.12) being equivalent to (3.17) which has been

introduced for the purpose of getting the form of v‘l .- In this case according to
Theorem (2.1) or (3.2), we have _[v K;n = 0 identically, so _[v I‘;“kl = 0 ought to be

considered. However, in what follows, we shall study this fact in detail.

In view of the equations (1.9) and (3.7) differentiating (2.12) covariantly with
respect to x™, we get

pimKy, = Muv) (8.1

| hm *
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Multiplying the above relation by v* and using (3.2), we obtain

leK:jk vk = —p, fvi, o ...(42)

which in view of the eqn. (3.17), reduces to

p,mpsvi,,, = puvi, o ...(4.3)
Since p 7% const., the above relation yields

oY =V -
Hence, with the help of eqns. (3.17) and (4.4), we obtain

v"I y -+ Khi,.s V= (:uviI . p,v'-l »=0. ...(4.5)

Introducing the above relation into (1.13), we get

LyTH = 6T v . .-(4.6)

s

Thus, we have

Theorem 4.1 — An SRFn-space satisfying v ym = 0, ymVv™ 7 const. and having

the resolved curvature tensor Kh‘;k of the form (2.12), admits naturally a non-affine

motion (i.e. v I‘;“ki # 0).

Secondly, let us consider the space of the second kind having p = ym™ = 0.

In this case according to Theorem 2.2, we have _L’vK,:’.k = 0 necessarily. Then,

let us study the possibility of _[v sz: = 0. In an affinely connected space the
Bianchi identity (1.8) takes the form

vk, ¥ = — 1Ky, ¥ N CN))

from which, taking case of y; # 0, we can put

Koy ¥ = M 1e. .(4.8)

Now, being s % 0, there exists a suitable vector £m such that ymE™ = 1. Transvecting
(4.8) by &*, we get

Ky, v = M, - ...(4.9)

Then introducing a non-symmetric tensor t* considered in the last half of §2 by
e = yrEl from (4.8), we get
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Ky =M, ...(4.10)

hkl

which by virtue of (2.8) reduces to
V= M, .(@4.11)

Consequetly (4.8), takes the form

Ky V' = = ¥, ..(4.12)
Introducing (4.12) into (1.13), we obtain
i (1 i ' i ] .
Ly =V — v, + oLy, v, & ...(4.13)

i

Therefore, when v’ = denotes a recurrent tensor with respect to the gradient recurrent

vector vz, we have
LyTH = 9I% v . ..(4.14)
Thus, we have

Theorem 4.2 — An SRFn-space defined by a grédient recurrence vector and
characterised by fvy» = 0 and ymv™ = 0, admits a non-affine motion when the

space has a recurrent tensor vlj ; With respect to yg.
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