ON THE APPROXIMATION OF AN ANALYTIC FUNCTION BY
EXPONENTIAL POLYNOMIALS

A. NAUTIYAL* AND D. P. SHUKLA

Department of Mathematics, Indian Institute of Technology, Kanpur 208016

(Received 7 August 1982)

For a function $f(s) = \sum_{n=0}^{\infty} a_n \exp (s \lambda_n)$, $s = \sigma + it$, analytic in the half
plane $\Re s < \alpha \ (-\infty < \alpha < \infty)$, let $E_k(f, \beta)$, the error in approximating the
function $f(s)$ by exponential polynomials in the half plane $\Re s \leq \beta \ (\beta < \alpha)$; be defined as

$$E_k(f, \beta) = \inf_{b_0, b_1, \ldots, b_k} \left[\max_{-\infty < t < \infty} \left| f(\beta + it) \right| - \sum_{n=0}^{k} b_n \exp ((\beta + it) \lambda_n) \right] \quad \{ k = 0, 1, 2, \ldots \}$$

In the present paper, we have characterized the order and the type of the
function $f(s)$ in terms of the rate of decay of the approximation error $E_k(f, \beta)$.

1. INTRODUCTION

Let $\{\lambda_n\}_{n=0}^{\infty}$ be a given sequence of real numbers such that $0 = \lambda_0 < \lambda_1 < \ldots < \lambda_n < \ldots$, $\lambda_n \to \infty$ as $n \to \infty$ and the following condition (1.1) is satisfied

$$\lim_{n \to \infty} \inf (\lambda_n - \lambda_{n-1}) = \delta > 0.$$ \hspace{1cm} (1.1)

Then $\{\lambda_n\}$ also satisfies

$$\lim_{n \to \infty} \sup \frac{n}{\lambda_n} = D < \infty.$$ \hspace{1cm} (1.2)

Now, consider the Dirichlet series

$$f(s) = \sum_{n=0}^{\infty} a_n \exp (s \lambda_n)$$ \hspace{1cm} (1.3)

where $s = \sigma + it$, σ and t being real variables. If the series given by (1.3) converges
absolutely in the half plane $\Re s < \alpha \ (-\infty < \alpha < \infty)$ then it is known (Mandelbrojt
1944, p. 166) that the series (1.3) represents an analytic function in $\Re s < \alpha$ and
since (1.2) is satisfied we have

$$-\alpha = \lim_{n \to \infty} \sup \frac{(\log | a_n |)}{\lambda_n}.$$ \hspace{1cm} (1.4)

*Present address: Systems Analysis Divison, Defence Research and Development Laboratory,
Kanchanbagh, Hyderabad 500258.
Let D_α denote the class of all functions $f(s)$, given by (1.3), which are analytic in $\Re s < \alpha (-\infty < \alpha < \infty)$. If, in (1.3), $a_n = 0$ for $n \geq k + 1$ and $a_k \neq 0$, then $f(s)$ will be called an exponential polynomial of degree k. The class of all exponential polynomials of degree at most k will be denoted by π_k.

To study the growth of a function $f(s) \in D_\alpha$, the concept of order ρ (Juneja and Nandan 1978) is defined as

$$\rho \equiv \rho(f) = \limsup_{\sigma \to \alpha} \frac{\log \log M(\sigma, f)}{-\log(1 - \exp(\sigma - \alpha))} \ldots (1.5)$$

where $M(\sigma, f) \equiv M(\sigma) = \max_{-\infty < t < \infty} |f(\sigma + it)|$; and if $0 < \rho < \infty$, the type T of $f(s)$ is defined as

$$T \equiv T(f) = \limsup_{\sigma \to \alpha} \frac{\log M(\sigma, f)}{(1 - \exp(\sigma - \alpha))^{1/\rho}} \ldots (1.6)$$

Let \overline{D}_β, $-\infty < \beta < \infty$, be the class of all functions $f(s)$, given by (1.3), analytic in $\Re s \leq \beta$, i.e., $f(s) \approx \overline{D}_\beta$ if $f(s) \in D_{\alpha_0}$ for some $\alpha_0 > \beta$. For $f(s) \in \overline{D}_\beta$, we define $E_n(f, \beta)$, the error in approximating the function $f(s)$ by exponential polynomials of degree n in uniform norm as

$$E_n(f, \beta) = \inf_{p \in \pi_n} \|f - p\|_{\beta}, \ n = 0, 1, 2, \ldots \ldots (1.7)$$

where

$$\|f - p\|_{\beta} = \max_{-\infty < t < \infty} |f(\beta + it) - p + (\beta + it)|.$$

Juneja and Nandan (1978) have studied order ρ and type T of $f(s) \in D_\alpha$ in terms of the coefficients a_n's in (1.3). In the present paper we have characterized order ρ and type T of $f(s) \in D_\alpha$ in terms of the rate of decay of the approximation error $E_n(f, \beta), \beta < \alpha$, as $n \to \infty$.

We prove:

Theorem 1—Let $f(s) \in \overline{D}_\beta$, $-\infty < \beta < \infty$. Then $f(s) \in D_\alpha$, $\beta < \alpha < \infty$, if and only if,

$$\limsup_{n \to \infty} \frac{\log E_n(f, \beta)}{\lambda_{n+1}} = \beta - \alpha. \ldots (1.8)$$

Theorem 2—Let $f(s) \in D_\alpha$ be of order ρ and $-\infty < \beta < \alpha < \infty$. Then

$$\rho = \limsup_{n \to \infty} \frac{\log^+ \log^+ E_n(f, \beta) \exp((\alpha - \beta) \lambda_{n+1})}{\log \lambda_{n+1} - \log^+ \log^+ (E_n(f, \beta) \exp((\alpha - \beta) \lambda_{n+1}))} \ldots (1.9)$$

where $\log^+ x = \max(0, \log x)$.

Theorem 3—Let $f(s) \in D_\alpha$ and $-\infty < \beta < \alpha < \infty$. Then $f(s)$ is of order ρ ($0 < \rho < \infty$) and type T, if and only if,

$$\nu = \frac{(-1)^{\rho+1}}{\rho^\nu} T$$
where
\[v = \limsup_{n \to \infty} \frac{\log^+ (E_n (f, \beta) \exp ((\alpha - \beta) \lambda_{n+1}))^{p+1}}{\lambda_{n+1}^p} \] ... (1.10)

satisfies \(0 < v < \infty \).

2. Preparatory Lemmas

In this section we give some lemmas required in the proofs of Theorems 1, 2 and 3.

Lemma 1—Let \(f(s) \in D_\alpha \) and \(-\infty < \beta < \alpha < \infty \). Then, for all \(\sigma (\sigma < \alpha) \) sufficiently close to \(\alpha \), we have

\[E_k (f, \beta) \leq KM (\sigma, f)/\exp ((\sigma - \beta) \lambda_{k+1}), \quad k = 0, 1, 2, \ldots \]

where \(K \) is a constant independent of \(k \) and \(\sigma \).

Proof: Let \(f(s) \in D_\alpha \) be given by (1.3) and let

\[p_k (s) = \sum_{n=0}^{k} a_n \exp (s \lambda_n) \]

be the \((k + 1)\)th partial sum of the series (1.3) of \(f(s) \). Now using the definition (1.7) of \(E_k (f, \beta) \) we have

\[E_k (f, \beta) \leq \|f - p_k\|_{\beta} \leq \sum_{n=k+1}^{\infty} |a_n| \exp (\beta \lambda_n) \leq M(\sigma) \sum_{n=k+1}^{\infty} \exp ((\beta - \sigma) \lambda_n) \] ... (2.1)

for \(\sigma > \beta \), since by Cauchy's inequality \(|a_n| \leq M (\sigma)/\exp (\sigma \lambda_n) \) for all \(n \) and all \(\sigma < \alpha \). Further, since (1.1) is satisfied, we can choose \(0 < \delta' < \delta \) such that \((\lambda_n - \lambda_{n-1}) \geq \delta' \) for all \(n \geq 0 \). Thus, for \(\sigma \geq (\alpha + \beta)/2 \), (2.1) gives that

\[E_k (f, \beta) \leq M(\sigma) \exp ((\beta - \sigma) \lambda_{k+1}) \sum_{n=k+1}^{\infty} \exp ((\beta - \sigma) (\lambda_n - \lambda_{k+1})) \]

\[\leq M(\sigma) \exp ((\beta - \sigma) \lambda_{k+1}) \sum_{n=0}^{\infty} \exp (- (\alpha - \beta) \delta' n/2) \]

\[= M(\sigma) \exp ((\beta - \sigma) \lambda_{k+1}) \frac{1}{1 - \exp ((\beta - \alpha) \delta'/2)}. \]

The lemma follows from the above inequality.

Lemma 2—Let \(f(s) \in \tilde{D}_\beta \), \(-\infty < \beta < \infty \), be given by (1.3). Then for \(n \geq 1 \), we have

\[|a_n| \exp (\beta \lambda_n) \leq 2 E_{n-1} (f, \beta). \]

Proof: For \(f(s) \in \tilde{D}_\beta \) we have (Mandelbrojt 1944, Theorem IX)
\[a_n \exp(\beta \lambda_n) = \lim_{t_0 \to \infty} \frac{1}{t_*} \int_{t_0}^{t_*} f(\beta + it) \exp(-i t \lambda_n) \, dt. \tag{2.2} \]

Further, if \(x \) is real and \(x \neq 0 \), then
\[\lim_{t_0 \to \infty} \frac{1}{t_*} \int_{t_0}^{t_*} \exp(x(\beta + it)) \, dt = 0. \tag{2.3} \]

From (2.2) and (2.3) we get
\[a_n \exp(\beta \lambda_n) = \lim_{t_0 \to \infty} \frac{1}{t_*} \int_{t_0}^{t_*} \left(f(\beta + it) - p(\beta + it) \right) \exp(-it \lambda_n) \, dt \]

for any \(p(s) \in \pi_{n-1} \). The above relation easily gives that
\[|a_n| \exp(\beta \lambda_n) \leq \|f - p\|_\beta \tag{2.4} \]

for any \(p(s) \in \pi_{n-1} \). By the definition (1.7) of \(E_n(f, \beta) \) there exists \(\tilde{p}(s) \in \pi_{n-1} \) such that
\[\|f - \tilde{p}\|_\beta \leq 2 \, E_{n-1}(f, \beta). \tag{2.5} \]

Taking, in particular \(p(s) = \tilde{p}(s) \) in (2.4) and using (2.5) the lemma follows from (2.4).

We also need the following coefficient characterizations, obtained by Juneja and Nandan (1978), of order \(\rho \) and type \(T \) of \(f(s) \in D_\alpha \) given by (1.3).

Lemma 3—Let \(f(s) \in D_\alpha \), given by (1.3), be of order \(\rho \). Then
\[\rho = \limsup_{n \to \infty} \frac{\log^+ \log^+(|a_n| \exp(\alpha \lambda_n))}{\log \lambda_n - \log^+ \log^+(|a_n| \exp(\alpha \lambda_n))}. \]

Lemma 4—Let \(f(s) \in D_\alpha \), given by (1.3), be of order \(\rho \) (\(0 < \rho < \infty \)) and type \(T \). Then
\[T(\rho + 1)^{\rho+1}/\rho^\rho = \limsup_{n \to \infty} \frac{\log^+(|a_n| \exp(\alpha \lambda_n))^{\rho+1}}{\lambda_n^\rho}. \]

Remark: In Juneja and Nandan (1978), Lemmas 3 and 4 were obtained with the condition (1.2) on the exponents \(\lambda_n^\nu \)'s instead of (1.1).

3. **Proofs of the Theorems**

Proof of Theorem 1—First suppose that \(f(s) \in D_\beta \) belongs to \(D_\alpha \), \(\beta \leq \alpha < \infty \). Then, by Lemma 1, we have
\[
\limsup_{n \to \infty} (\log E_n (f, \beta))/\lambda_{n+1} \leq \beta - \sigma
\]
for all \(\sigma \) sufficiently close to \(\alpha \) and so
\[
\limsup_{n \to \infty} (\log E_n (f, \beta))/\lambda_{n+1} \leq \beta - \alpha. \tag{3.1}
\]

On the other hand, using Lemma 2 and (1.4), since \(f(s) \in D_\alpha \), we have
\[
- \alpha = \limsup_{n \to \infty} (\log |a_n|)/\lambda_n \leq - \beta + \limsup_{n \to \infty} (\log E_n (f, \beta))/\lambda_{n+1}. \tag{3.2}
\]

The necessity part of the theorem follows from (3.1) and (3.2).

Sufficiency part can also be proved similarly. This proves the theorem.

Proof of Theorem 2—Let the limit superior on the right hand side of (1.9) be denoted by \(d \). Obviously \(0 \leq d \leq \infty \). First, let \(0 < d < \infty \) and \(0 < d' < d \). Then, there exists a sequence \(\{n_k\} \) of positive integers tending to \(\infty \) such that
\[
\log E_{n_k} (f, \beta) + \lambda_{n_k+1} (\alpha - \beta) > (\lambda_{n_k+1})^{d'/1+\beta} \tag{3.3}
\]
for \(k = 1, 2, 3, \ldots \). Now, using Lemma 1, (3.3) gives that
\[
\log M(\sigma, f) \geq (\lambda_{n_k+1})^{d'/1+\beta} + \lambda_{n_k+1} (\sigma - \alpha) - \log K \tag{3.4}
\]
for the sequence \(\{n_k\} \) and all \(\sigma (\sigma < \alpha) \) sufficiently close to \(\alpha \). Let \(\{a_k\} \) be the sequence defined as
\[
\sigma_k = \alpha - (d'/1+\beta)(1/\lambda_{n_k+1})^{1/(d'+1)}.
\]
Then \(\sigma_k \to \alpha \) as \(k \to \infty \). Now, using (3.4), for all sufficiently large values of \(k \) we have
\[
\log M(\sigma_k, f) \geq \frac{(d')^{d'}}{(1+d')^{1+d'}} (\alpha - \sigma_k)^{-d'} - \log K.
\]
Since \(1 - \exp(\sigma_k - \alpha) \sim (\alpha - \sigma_k) \) as \(k \to \infty \), the above inequality gives that
\[
\limsup_{k \to \infty} \log \log M(\sigma_k, f) \geq \frac{(d')^{d'}}{(1+d')^{1+d'}} \tag{3.5}
\]
and, since \(d' (d) \) is arbitrary, this gives
\[
\rho \geq d. \tag{3.5}
\]
Obviously, (3.5) holds for \(d = 0 \). For \(d = \infty \) the above analysis that \(\rho = \infty \).

On the other hand, using (1.3) and Lemma 2, for \(f(s) \in D_\alpha \), we get
\[
M(\sigma, f) \leq \sum_{n=0}^{\infty} |a_n| \exp(\sigma \lambda_n) \leq |a_0| + 2 \sum_{n=1}^{\infty} E_{n-1} (f, \beta) \exp((\sigma - \beta) \lambda_n) = |a_0| + 2M(\sigma, f_\beta) \tag{3.6}
\]
where, by Theorem 1,
\[f_\beta(s) = \sum_{n=1}^{\infty} \{E_{n-1} (f, \beta) \exp (-\beta \lambda_n)\} \exp (s \lambda_n) \quad \ldots (3.7) \]

belongs to \(D_\alpha \). From (3.6) we get \(\rho \leq \rho (f_\beta) \), where \(\rho (f_\beta) \) is the order of \(f_\beta(s) \).

Applying Lemma 3 to \(f_\beta(s) \), we now get

\[\rho \leq d \quad \ldots (3.8) \]

Theorem now follows from (3.5) and (3.8).

Proof of Theorem 3—First suppose that \(f(s) \) is of order \(\rho \) and type \(T, \ T < \infty \).

Then, given \(\epsilon > 0 \), (1.6) gives that there exists \(\sigma_0 = \sigma_0(\epsilon) \) such that

\[\log M(\sigma, f) \leq (T + \epsilon) (1 - \exp (\tau - \alpha))^{-\rho} \]

for \(\sigma_0 < \sigma < \alpha \). Using Lemma 1 this gives

\[\log^+ (E_n (f, \beta) \exp ((\alpha - \beta) \lambda_n)) \leq (T + \epsilon) (1 - \exp (\sigma - \alpha))^{-\rho} + \lambda_{n+1} (\alpha - \sigma) + \log^+ K \quad \ldots (3.9) \]

for all \(n \) and all \(\sigma \) sufficiently close to \(\alpha \). Chose a sequence \(\{\sigma_n\} \) as

\[(1 - \exp (\sigma_n - \alpha)) = ((T + \epsilon) \rho / \lambda_{n+1})^{1/(p+1)}. \quad \ldots (3.10) \]

Clearly \(\sigma_n \to \alpha \) as \(n \to \infty \). Using (3.9) and (3.10) we get

\[\log^+ (E_n (f, \beta) \exp ((\alpha - \beta) \lambda_{n+1})) \leq \frac{(T + \epsilon)^{1/(p+1)} \lambda_{n+1}^{p/(p+1)}}{\rho p/(1 + p)} \times (1 + \rho + o(1)) \]

for all sufficiently large values of \(n \). This, on proceeding to limits easily gives

\[\nu \leq (\rho + 1)^{p+1} T/\rho^p. \quad \ldots (3.11) \]

On the other hand, it follows from Theorem 2 and Lemma 3 that the order of \(f_\beta (s) \),

given by (3.7), is equal to the order \(\rho \) of \(f(s) \). Using (3.6) we now get \(T \leq T(f_\beta) \),

where \(T(f_\beta) \) is the type of \(f_\beta(s) \) and so, applying Lemma 4 to \(f_\beta(s) \), we obtain

\[(\rho + 1)^{p+1} T/\rho^p \leq \nu. \quad \ldots (3.12) \]

Necessity part of the theorem now follows from (3.11) and (3.12).

Conversely, suppose that \(0 < \nu < \infty \), then (1.10) easily gives

\[\rho = \limsup_{n \to \infty} \frac{\log^+ \log^+ (E_n (f, \beta) \exp ((\alpha - \beta) \lambda_{n+1}))}{\log \lambda_{n+1} - \log^+ \log^+ (E_n (f, \beta) \exp ((\alpha - \beta) \lambda_{n+1}))} \]

and so, by Theorem 2, \(f(s) \) is of order \(\rho \). Sufficiency part of the theorem now follows from the necessity part.

This proves the theorem.

References
