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In this paper, we have studied infinitesimal projective variations of a
P-Sasakian hypersurface in a locally product Riemannian manifold. We have
mainly proved that an infinitesimal projective variation satisfying a certain
condition of a compact orientable P-Sasakian hypersurface is tangential and
the variation leaves the P-Sasakian structure tensors invariant, Also, there
does not exist an infinitesimal projective normal variation of a P-Sasakian
hypersurface except a trivial variation.

1. INTRODUCTION

In the previous paper (Matsumoto 1980), we have considered an infinitesimal
conformal variation of a P-Sasakian hypersurface in a locally product Riemannian
manifold and we have gotten an interesting result about such variation.

In this paper we shall consider infinitesimal projective variations defined by Yano
(1978) of a hypersurfaces in a locally product Riemannian manifold and we shall
mainly prove the following:

Theorem — If an infinitesimal projective variation of a compact orientable
P-Sasakian hypersurface in a locally product Riemannian manifold satisfies the
condition (2.30), then the variation is tangential and it preserves the P-Sasakian
structure.

In §2, we recall some facts about hypersurfaces in a locally product Riemannian
manifold and some properties about infinitesimal variations of hypersurfaces.

In §3, we prove the above theorem and state one corollary. Finally, we prove
that there does not exist an infinitesimal projective normal variation satisfying the
condition (2.30) of a P-Sasakian hypersurface in a locally product Riemannian
manifold.

Present address : Department of Mathematics, Faculty of Education, Yamagata University,
Yamagata, 990 Japan.
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Throughout this paper, we assume that manifolds are class C~ and orientable
and the tensor fields are always class C.

2. PRELIMINARIES
Let M™ be an n-dimensional locally product Riemannian manifold covered by a
system of coordinate neighbourhood {U, x} and F: and g.a be respectively its almost
product structure and its associated positive definite Riemannian metric, where and in
the sequel the indices A, g, v ... run over the range 1, 2, ..., n.

Then by definition we have

FIF) =3} (FL #8) (2.1

geyFy F) = gua (2.2)
A

VVF,. =0 «.(2.3)

where the operator ya denotes the covariant differentiation with respect to gua
(Tachibana 1960).

Let M"-* be a hypersurface of M" covered by a system of coordinate neighbour-
hood {V, y} and g;: be the induced metric tensor, where and in the sequel the indices
h, i, j, ... run over the range 1, 2, ..., n — 1.

We put the local representation of M"-* by
xX2 = xA(yH) we(2.4)
and put

B

+

= gixA @i = 9/0y". ...(2.5)

Then B:’ are n —1 linearly independent vectors of M" tangent to M»t. If we

denote CA the unit normal to M™%, then we have

guAB" B} =gi, guaCrCr=1, gaB"Cr=0 ...(2.6)

where we choose C2 in such a way that CA, B,.’L form the positive sense of M" and

that B} form the positive sense of M"-3,
Now the transformation F: B} of Bf by F: can be written as

FAB* — f'B} + fiCA ex))
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where f i and f; are respectively a tensor field of type (1, 1) and a covariant vector
field on M™*. And the transformation F: C*r of C* by F: can be written as

FXc* = f'B} + qCA (2.8)
where f* = fig’* and ¢ is a scalar function on M"1,

Applying F; to (2.7) and (2.8) and considering a tangential and a normal part,

we respectively have
[ =8 —fif fifi=—af (2.9)
fifs = —af', fifi=1-¢. ...(2.10)
If the space M"' is n-g-invariant (Matsumoto 1979), then the function g is

identically zero and the tensor fields (f ’, , fi, gs) are an almost paracontact metric
structure (Sato 1976, 1977).

By virtue of the equations of Gauss and Weingarten, differentiating (2.7) and
(2.8) along M™%, we respectively find

Vi) = huft 4 Sk, Vifi = ghs — f s ~(211)
vift = ghl — B fi,  vig = —2f'hu (2.12)

where the operator y; denotes the van der Waerden-Bortolotti covariant differentiation,
hyi is the second fundamental tensor of M- and h:. = hug®.

Especially, if the space M*! is n-g-invariant and P-umbilical (Matsumoto 1979),
that is, ¢ = 0 and

hi = —gi + fifs, ..(2.13)
the almost paracontact metric structure satisfies

Vifi = Vifis  Viff =1, (2.14)

Vaf§ = (= ges + Af) S + (=8, + Af) i 2.15)

The above equations teach us the almost paracontact metric structure is a P-Sasakian

structure (Sat5 1976, 1977). We call such a hypersurface a P-Sasakian hypersurface in

a locally product Riemannian manifold. Hereafter, we call this manifold a P-Sasakian
hypersurface, for simplicity.

If a vector field »* in an almost paracontact Riemannian manifold preserves the
structure tensor invariant, that is, if the vector field #* satisfies t he relations
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Liwgs =0, Lwf,=0, Lwfi=0 ...(2.16)

then the vector field u* is called an infinitesimal automorphism, where the operator
L(u) denotes the Lie differentiation with respect to u.

Now let an infinitesimal variation of a hypersurface M*~* in a locally product
Riemannian manifold M” be given by

A =x2 4 v e -(2.17)

vA being a vector field on M defined along A"~ that is called a variation vector of
(2.17), where ¢ is an infinitesimal (Yano 1978). Then we have

B! = B} + (a%)e ..(2.18)

where E} = 9ix* are n —1 linearly independent vectors tangent to the varied hyper-

surface at the varied point (¥1).
We displace the vector E? parallely from the varied point (¥}) to the original

point (x2) and put them §f .

Then Ef can be written as

BA _ BA , T8

B = B + {N) (x -+ ve) WBY e ...(2.19)
from which

B

2

f

B} + (i) e ...(2.20)

neglecting the terms of order higher than one with respect to e, where {yA.} are the
Christoffel symbols with respect to g.a and we define y:v2 as

virk = 2ivd - (WA} B) v ..(2.21)

In the sequel, we always neglect terms of order higher than one with respect to e.

If we put
8B} =B} — B} -(2.22)
and
VA = va: + 8CA ..(2.23)
we have

3B} = [(vo* — 6K)) B} + (8 + huv) CA] e -(2.24)
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where v and 0 are a vector field and a scalar function on M"™, respectively, and

8; = 0;9. We call the SB? an infinitesimal variation of B?.

When 8 = 0, that is, when the variation vector vA is tangent to the hypersurface,
we say that the variation is tangential. When v’ = 0, that is, when the variation
vector vA is normal to the hypersurface we say that the variation is normal. When
vA = 0, that is, when the variation vector is identically zero, we say that the variation
is trivial.

We denote by CA the unit normal to the varied hypersurfaée. We displace

CA parallely from the point (F}) to the point (x4) and call it CA. Then CX can be
written as

CA = Cr + {0} (x + ve) WCle. ...(2.25)
If we put

3CA = Cr — C* ...(2.26)
then we can obtain

3CA = — (6% + A v) Ble .(2.27)

where 6 = 8;g7%,

Furthermore, we have the following formulas about infinitesimal variations of
the induced geometric objects (Matsumoto to appear) :

3f = ILf) — 8 fL— 11 h) + 0.fF - fib] e )l
S = [Lfi — Ok + qb: + £1 01 € f} +(228)
8 = [Lf* — £ 80 + O + g0 e l
8gsi = [Lgs — 26hi]e, 8 = [Lg — 2f%0.] ¢ J]
where the operator L denotes the Lie differentiation with respect to the vector field v*,

Especially if we assume that the manifold M™-* is a P-Sasakian hypersurface and
the variation preserves the function ¢ invariant, then (2.28) can be written as

5= (LS + 0, 4+ £i8 « )

. _ o ot (2.29)
o= ILfi + 10l e 8 = [Lff — ff 07
3gsi = [Lgs + 20(gsi — fifi)] € J

and
S = 0. ..(2.30)
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3. INFINITESIMAL PROJECTIVE VARIATIONS

Let M"-! be a hypersurface of a locally product Riemannian manifold M.

If an infinitesimal variation (2.17) of A" satisfies the relation
S{M =\ pi + 8 py) e ~(3.1)

then we call such a variation an infinitesimal projective variation. An infinitesimal
projective variation satisfying p; = 0 identically is called an infinitesimal affine varia-

tion, where p: is a certain vector field on M™! and { jh ; } are the Christoffel symbols
with respect to g4 (Yano 1978).

In this section, we assume that the manifold M 'f'l is always a P-Sasakian
hypersurface satisfying /2 — (n — 22 £0(f = f : = trace (f ; ) and an infinitesimal
variation (2.17) of M~ preserves the function g that is, the variation satisfies (2.29)
and (2.30).

Remark : The condition f2 — (n — 2)? 5~ 0 teaches us the manifold M"~*is not
SP-Sasakian (Adati and Miyazawa 1977).

Now let us consider an infinitesimal projective variation of M"~1. Then (3.1)
holds.

On the other hand, we know (Yano 1978)

{0 b=l veo - vEmo + v .02
Hence we have from (3.1) and (3.2)

A LR ZCORR I CORE SR AR
Substituting (2.13) into (3.3), we find

L {kij} = 20fusf¢ 4 (=8, + fif) 05 + (=8] + £if)

— (—grs + fofd) 0+ 8, pi + 8, p. (3.4)

By virtue of (3.4) and the formula (Yano 1965)

LR}

h h
kﬂ=vkL{J i}—-VjL{k i}

LR, = (Ofu — 0, fu) /2 + (f2 05 — 17 00) i + 20 {(gsfs

we obtain

— guf) [P+ fufy —fuif)} + (=8, + fif ) Ve —

(equation continued on p. 117)
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— (=8 + fif") Vi — (=gt + fifi) VebP+(—gus+Aifs) vi0»
+ (Sify = o)) 0 — (fifis — fufis) 88 + 8] Vapi— 38, Vips
+ 8 (Veps — Vipi) .(3.5)

where R’ denotes the curvature tensor with respect to gsi.

kit
Summing up (3.5) with i and 4, we have _
Veps — Vipr = 0 ...(3.6)
that is, the vector field p; is closed. Hence (3.5) can be written as
LRy, = @xfys — 0:fu) /* + (f3 05 — [} 8 f:
+ 20{(@ufs — guf) SN+ Sy — Faf [} + (fif y =SS )
— (fifis — fufi) 0 + (— 8] + fif ) Vabs — (=3, + fuf ™) Vbs
— (=i + fif)) Vb* + (= gui + ffi) Vs8» + 8] vups
— 8 Vipi. (3.7
Summing up (3.7) with k and 4, we get
LRy = 20ff5s + £ (fibs + £i85) + (n —4) vibs — 2fS* + if*) s
+ (V0¥ (g5 — fifi) — (0 —2) vips ...(3.8)
where R;: denotes the Ricci tensor with respect to gyi.

Transvecting (3.8) with /' and taking account of (2.30) and the formula (SatB and
Matsumoto 1979)

Riift = —(n =2) f;
we have

—(n —2) Lf; — RuLft = f8; + (n ~2) figsbi — (n —2) fivips.
...(3.9

From which, we have
2fiLf; = [ fVspi. ...(3.10)

Now, transvecting (3.7) with fif* and taking account of the formula (Sato and
Matsumoto 1979)
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Ry fo = gufi — gife
we obtain

SHLgr) f; — Lgs = 2085 — f3f)) + fiS*0rps — vipi. -+-(3.11)

In general, since we know the relation

SrLgks = Lfi — grilf*
(3.11) can be written as

(Lfi — gusLf*) fi — Lgsi = 20(gss — fifi) + fif*epi — vips.  ...(3.12)
Transvecting (3.12) with f* and taking account of (3.10), we find

fiLgii = fivipi. -.(3.13)
Substituting (3.13) into (3.11) and using (3.6), we get
ngi = 28 (g,-,- —f}ﬂ) -+ Vipi. ...(3.14)

By virtue of (3.14) and the formula (Yano 1965)

L { khj} = }g" (Velgi + ViLgri — Vilgxi)
we obtain
t{ " h = =06 = firm — 66— AN + 0 —fif)
+ 20fisf? + } (Viveps — Ry, pi) g™ . (3.15)
Comparing with (3.4) and (3.15), we have
ViviP* + R} Pt = 28" pi + 3 py). ..(3.16)
Thus we have from (3.6) and (3.16)

Proposition 1 — For an infinitesimal projective variation (3.1) satisfying (2.30) of
a P-Sasakian hypersurface, the vector field p; is a closed projective Killing vector field
with an associated vector field 2p:.

Remark : In Proposition 1, we do not use the condition /2 — (n —2)* £ 0.

On the other hand, Ogata (1978) has proved the following:

Proposition 2 — In a P-Sasakian manifold with f2 — (n —2)? 3£ 0, each projec-
tive Killing vector field is an infinitesimal automorphism.

By virtue of (3.1), (3.14) and Propositions 1 and 2, we have:

Proposition 3 — An infinitesimal projective variation (3.1) satisfying (2.30) of a
P-Sasakian hypersurface is an infinitesimal affine one. Furthermore, since the vector
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field p;: is identically zero, then the vector field v* is an f~conformal Killing vector field
(Matsumoto 1977).

For an f~conformal Killing vector field, we have proved the following (Matsumoto
1977) :

Proposition 4 — In a compact orientable P-Sasakian manifold, an f-conformal
Killing vector field is an infinitesimal automorphism.

Let the hypersurface M"~! be a compact P-Sasakian hypersurface, then from
(3.14) and the above proposition we have 0 == 0, i.e., our variation is tangential.
Furthermore, by virtue of the above result and (2.29), we can show that the variation
preserves P-Sasakian structure invariant. We know that a compact P-Sasakian hyper-
surface satisfies f2 — (n — 2)® % 0 (Sasaki 1981). Thus our main theorem was
proved.

As the special case of the main theorem, we have

Corollary — For an infinitesimal affine variation satisfying (2.30) of a P-Sasakian
hypersurface M"-*, the vector field v* is an f~conformal Killing vector field. If the
manifold M1 is compact then the variation is tangential and preserves the P-Sasakian
structure.

Finally, we shall consider an infinitesimal projective normal variation of a
P-Sasakian hypersurface. Then (3.4) can be written as

20fif® + (= 8 + fifM 05 + (— 8, + fif™ b

—(— g +fif)® + 8 pi +3ps=0. ..(3.17)

Transvecting (3.17) with fa, we have

20fs + fips + fips = O (3.18)
from which

pi = —(f'ps) fi. ..(3.19)
Transvecting (3.17) with g7, we obtain

20f—pfy P —(n—46*=0. ...(3.20)
By virtue of (2.30) and the above equation, we find

0f = fipi. (3.21)

Substituting (3.19) and (3.21) into (3.18), we get
0 fu —ffif)=0

from which, we get) = 0, that is, the infinitesimal variation is trivial. Thus we have
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Theorem 5 — Except for a trivial infinitesimal variation, there does not exist an
infinitesimal projective normal variation satisfying (2.30) of a P-Sasakian hypersurface
in a locally product Riemannian manifold.

Remark : In the above theorem, we does not use the condition /2 — (n —2)2540.
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