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INFLUENCE OF TRANSVERSE SHEAR AND ROTATORY INERTIA ON
AXISYMMETRIC VIBRATIONS OF POLAR ORTHOTROPIC ANNULAR
PLATES OF PARABOLICALLY VARYING THICKNESS
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The present paper deals with the free axisymmetric vibrations of polar ortho-
tropic annular plates of non-uniform thickness under Mindlin’s shear theory
of plates. The coupled differential equations governing the transverse motion
have been solved by the method of Chebyshev polynomials. Frequencies,
mode shapes and moments have been computed for the first three modes of
vibration for different plate parameters. A comparison of numerical results
with those obtained by classical theory has been presented and the influence
of the shear deformation and rotatory inertia has been clarified.

INTRODUCTION

Structural components of varying thickness are highly favoured these days due
to economy, safety and durability considerations. Plates of variable thickness are
often encountered in engineering applications and their use in machine design, nuclear
reactor technology, naval structures and acoustical components is quite common. In
the recent past, considerable attention has been devoted to the study of static and
dynamic behaviour of isotropic, non-uniform plates of different geometries, references
(Lal 1979, Banerjee 1979, Laura ef al. 1979, Rao and Prasad 1975, Gupta and Lal
1980) to name a few. As regards the work on anisotropic, circular/annular plates,
only one investigation by Soni and Amba Rao (1975) on vibrations of orthotropic
circular plates of variable thickness has been found by the present authors. However,
the static and dynamic behaviour of orthotropic circular/annular plates of uniform
thickness have been considered by a number of workers. Qut of these a few impor-
tant ones are reported in references (Pardoen 1974, Greenberg and Stavsky 1978,
Ginesu et al. 1979, Vijayakumar and Joga Rao 1971, Kirmser ef al. 1972).

The object of the present paper is to investigate the effects of the shear deforma-
tion and the rotatory inertia on the axially symmetric free vibrations of polar
orthotropic annular plates of parabolically varying thickness. The inclusion of rotatory
inertia and transverse shear alongwith orthotropy and variable thickness further com-
plicates the governing differential equations, with the result that coupled equations are
obtained. These have been solved by Chebyshev collocation technique. The frequency
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determinants have been obtained for three cases of inner edge clamped and the outer
edge either clamped or simply supported or free. Frequencies, mode shapes and
moments have been computed for the first three modes of vibration for different plate
parameters. The numerical calculations have been made with the values for fibre
reinforced plastic (boron epoxy), taking it as an example of a polar orthotropic
material. A comparison of results with that obtained from classical plate theory leads
to interesting conclusions.

2. EQUATION OF MOTION

Taking into account both the shear deformation and rotatory inertia effects, the
differential equations, for the free axisymmetric motion of homogeneous and cylindri-
cally (polar) orthotropic circular or annular plate of thickness # = A(r), referred to
the polar coordinates (r, 8) are (Mindlin 1951, Soni and Amba Rao 1975, Deresiwicz
and Mindlin 1955)
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where 7 is the time, w the transverse deflection, p the mass density per unit volume,

and ¢, the angular rotation of the normal to the neutral surface in radial direction.
The moment and shear resultants are

M, = Dy (%‘ﬁ"-f-v?.%),Mo Do(% + ra;p;)

. ow
Or — kiGroh (4» + a—r)

where D, = Eh3/12(1 — veve), Do = E¢h?/12(1 — vrve) are the flexural rigidities;
E,, Ep, vr, vo and Gy are the elastic constants in proper directions with v,Es = Erve;
and k,(=-n?/12) is an averaging shear coefficient.

For harmonic vibrations

w(r, 1) = w(r) e and .(r, 1) = §(r) et ..(3)

where  is the radian frequency. Equations (1) and (2) now reduce to

4 = 12k,Gron =0 (4 4 O ) —0 )
5 @1+ ek L=y 5 -
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Consider an annular plate of inner and outer peripheral radii b and q, respectively.
Out of many research efforts made on the free vibrations of non-uniform plates, there
are several (Gupta and Lal 1980, Olson and Hazell 1979, Jain and Soni 1973, Tomar
and Gupta 1976) in which the variation of thickness is parabolic, and these appear to
be of practical importance. Therefore, the discussion here is confined to the case in
which the thickness variation in radial direction is given by

h = hy(1 — ax?) ...(6)
where By = h | 20, « is the taper parameter and

x=rla, W=wla, h = hla ..(D
are the dimensionless variables.

Substitution of the relations (6) and (7) into equations (4) and (5) and the
elimination of the displacement function ¥ from the resulting equations leads to a
fourth order linear homogeneous differential equation with variable coefficients which
can be written as

4
g

z 455 =0 . (8)

i=0

A= (1 — ax?, Ay = %) (1 — ax?) (1 — Sax?)
- (1/x2)[ ( Q’x“‘ +—Kl—0> —2—-p)

—2ax%(1 — ax?) { 3vp - 19 ) + 48a3x2]

where

Ay = (1/%%) I:A,(mx- {1+ Ko> + 3p) — 203 (1 —ox) <3v. — 5p

4 Qixt (5+?)/ + 12634 (3ve + 7)]
Ay = x4 [A4( Q*xz/ Q2% —p) Ko 1>_ 3p )——Zax“(l-—a.xs)(Sp—:Sw

+ o <5 + 3}'(: >) + 12634 (3ve — p + Q%) — (nﬂ/nxf]
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Q2 = pazw2 (1 - VrVo)/Er, Ko = ksGr. (1 b VrVo)/Er,
p = Ep/E, and I = hi/12.

In terms of ¢, we can write ¥ as

W(x) — [ z B: Z;‘f (9

where
By = A;, By = (2/x) (1 — ax?) (1 ~ Tax?)
B, = (1/x®)[B;(Q%x% — p) — 6ax}(1 — ax?)(3 + vo) -+ 24uix?]
By = (1/x%) [By(Q2x% + p) + 6ax(1 — ax?) (p — Q2% — vy) + 24vealxt].

Let ¢ = bja. Then the solution of eqn. (8) together with the boundary
conditions at the inner and outer edges of the plate constitutes a well defined two-
point boundary value problem in the range (e, 1). This has been solved by Chebyshev
collocation technique.

3. METHOD OF SOLUTION

Let us take a linear transformation
2x=(_1—¢€y+(1+e ...(10)

to transform the range ¢ < x < 1 into the applicability range —1 < y < 1 of the
present technique. In terms of y, eqns. (8) and (9) become

z y. 4 ,_ﬂ - (1)

and

W(y) = —(1/Q?) z w4 dy‘ (12

where Vi = (2/(1 — &))idi, Wi = (2/(1 — €))*Bi, i =0, 1, 2, 3, 4.
Proceeding as in Gupta and Lal (1980), let us assume

m—S5

j_;‘*;. = > ol (13)

k=0
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where Tiu(k = 0, 1, 2, ..., m — 5) are the Chebyshev polynomials.
Successive integrations of eqn. (13) lead to

m—5
$ = ¢ + Ty + Ty + ¢T3 + kzo crisTp ...(14)

where ¢;(j = 1, 2, ..., m) are unknown constants and T; represents the ith integral
of T.
Substitution of ¢ and its derivatives in eqn. (11) gives an equation in terms of the

T’s and the unknown constants c¢’s. The satisfaction of this resultant equation at
(m — 4) collocation points given by

- 2k+1 = _ _

Y = COS8 (-’n—_—4—2-), k -—-0, 1, ey M 5 ...(15)
provides a set of (m — 4) equations in terms of unknowns ¢; (j = 1,2, ..., m), which
can be written in the matrix form as

[M][C] = [0] ..-(16)

where M and C are the matrices of order (m — 4) X mand m X 1, respectively.

4. BOUNDARY CONDITIONS

The following three combinations of boundary conditions have been taken into
consideration:

(i) C — C: clamped at both the inner and outer edges;
(i) C — S : clamped at the inner and simply supported at the outer edge;
(ili) C — F:clamped at the inner and free at the outer edge.

The relations which should be satisfied at a clamped, at a simply supported, and at a
free edge, are

2 v
_1——edy+x

W=¢=0W ¢ = 0;

and

2 dw

2 dﬁp Yeé . _ 3
+5 =9 + T & = 0, respectively.

I —-¢dy
5. CHARACTERISTIC EQUATIONS

Applying the C — C boundary conditionat y = — land y = 1, a set of four
homogeneous equations is obtained. These equations together with field equations (16)
give a complete set of m equations in m unknowns, which can be denoted by

[M/Bcc] [C] == [0] ..(17)
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where Bcc is a matrix of order 4 X m.

For a non-trivial solution of eqn. (17), the frequency determinant must vanish
and hence we get

| M/{Bcc | = 0. ...(18)

Similarly, for C — S and C — F boundary conditions frequency determinants can be
written as

| M[Bcs| =0 ...(19)
| M/Bcr| =0 ...(20)

6. NUMERICAL RESULTS AND DISCUSSION

Equations (18) - (20) are transcendental in the frequency parameter £ and can be
solved numerically for specific plate parameters. In the work reported here, the fre-
quency parameters for the first three modes of vibration were computed for a =
0.5(—0.2) —0.5, e = 0.3, 0.5 and A, = 0.0, 0.05,0.1,02for C—C,C—Sand C—F
boundary conditions. For computations, the number of collocation points m was taken
as 12 since further increase in m, does not improve the values even in the third place
of decimal. Calculations were carried out with double precision arithmetic (16 signi-
ficant digits) on the IBM 360/44 Computer. The numerical values of the elastic
constants used for the plate material are taken from (Soni and Amba Rao 1975)

E, = 8.0 x 10° 1bm™2, Ey = 2.7 x 10° b m~%,
ve = 0.25, Gr¢ = 1.25 X 105 1b m™2.

During computations, it was found that the difference between the frequency
parameters for C — C and C — S plates obtained by shear theory (ST) and classical
plate theory (CPT) is appreciable even in the second mode for e = 0.3, 4, = 0.05,
—0.5 € a < 0.5 and hence higher values of 4, > 0.1 have not been considered. In
case of C — F plate, however, this difference for 1, < 0.1, > —0.3, e = 0.3, is
small, and hence a higher value of 4, = 0.2 has been considered. Thus the plate para-
meters for C — C and C — S plates have been chosen as € = 0.3, 0.5, 7y = 0.01, 0.05,
0.1 and for C — F plate e = 0.5, , = 0.05, 0.1, 0.2 to study the effects of rotatory
inertia and transverse shear on the natural frequencies. The corresponding values are
given in Tables I-V. A study of these tables and Fig. 1 bring out the following
conclusions:

(i) The effects of shear and rotatory inertia are more pronounced in case of
C — C plate as compared to C — S and C — F plates for the same plate parmeters.

(i) The values of frequency parameter predicted by CPT become less and less
accurate as the taper parameter « decreases.



AXISYMMETRIC VIBRATIONS OF POLAR ORTHOTROPIC ANNULAR PLATES 211

(iii) The difference (Qc — Qs) increases with the increase in radii ratio ¢ where
Qc and Qs denotes the values of frequency parameter obtained by CPT and ST, respec-
tively.

(iv) The difference (Qc — Qs) increases with the increase in h,.

(v) The difference (Qc — Qs) increases with the increase in mode number.

(vi) The plots for Qc for C — C, C — S and C — F plates show almost a linear
variation with taper constant . However, it is not so for Qs.

The Figs. 2(a, b, ¢) exhibit the plots for the frequency parameters Qs and Qc

versus A, for &« = —0.5, € = 0.3, 0.5. The reason for choosing this value of « lies in
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Fic. 1. Variation of natural frequencies with taper parameter for h,=0.1, €=0.5 for the first three
modes of vibration.
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the fact that the error is maximum for it and thus it helps in deciding the applicability
range of CPT.

The CPT predicts satisfactory results for C — C boundary condition up to second
mode provided « > 0.5, ¢ = 0.3 and A, < 0.05, and errors up to 10 per cent are
neglected. For ¢ = 0.5, « > 0.5, A, < 0.05, the CPT results are reliable only in the
first mode neglecting error up to 7 per cent. Thus for C — C plate the CPT fails to
predict reasonably good results even in the first mode for « < 0 and Ay > 0.05. In
case of C — § plate, the CPT gives satisfactory results for both ¢ = 0.3, 0.5,
hy = 0.05 for a > 0.5 up to second mode while for —0.3 < « < 0.5 only first mode
will be reasonable when an error of 10 per cent is permissible. For C — F plate, the
CPT predicts the results satisfactorily up to second mode for e = 0.3, « > — 0.3, even
for h, = 0.1 while for ¢ = 0.5 it is not so [clear from Fig. 2(c)]. These discussions
show that ¢ and « both play an important role in the effects of transverse shear
and rotatory inertia. The CPT fails for modes higher than second in general for
hy > 0.05.

In Figs. 3 and 4, normalised displacements and moments have been exhibited for
o = - 0.5 and e = 0.5 for the first three modes of vibration for all the three boundary
conditions. Only curves for shear theory are shown in the figures as the displacements
and moments computed from the ST and CPT differ in respective magnitudes only in

TABLE I

Values of frequency parameter &, for C — C plate

bjla = 0.3
Q. Qg

Mode Values of
o * hy = 0.1 hy = 0,01 hy = 0,05 hy = 0.1
I —0.5 56.5030 1.6311 0.1623 0.7265 1.1404
—0.3 51.9134 1.4986 0.1492 0.6775 1.0881
—0.1 47.2193 1.3631 0.1358 0.6252 1.0284
0.1 42.3859 1.2235 0.1220 0.5692 0.9597
0.3 37.3562 1.0783 0.1076 0.5085 0.8799
0.5 32.0252 0.9245 0.0923 0.4417 0.7854
I -0.5 154.6063 4.4630 0.4413 1.7828 2.4766
—0.3 142.8686 4.1242 0.4086 1.6916 2.4081
—0.1 130.8114 3.7762 0.3747 1.5899 2.3260
0.1 118.3252 3.4157 0.3394 1.4756 2.2257
0.3 105.2276 3.0376 0.3022 1.3459 2.1003
0.5 91.1842 2.6322 0.2625 1.1973 1.9400
I —0.5 301.8734 8.7143 0.8561 3.1172 4.0302
—-0.3 280.6782 8.1024 0.7939 2.9902 3.9503
—0.1 258.3156 7.4569 0.7302 2.8454 3.8544
0.1 234.4250 6.7672 0.6646 2.6790 3.7362
0.3 208.6752 6.0239 0.5958 2.4842 3.5849
0.5 180.8931 5.2219 0.5195 2.2456 3.3792

*For general value of h,.
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TaBLE I
Values of frequency parameter §, for C — C plate
bla = 0.5
Mode Values of
« * hy = 0.1 hy = 0.01 hy = 0.05 hy = 0.1
I —0.5 116.0032 3.3487 0.3312 1.3431 1.8626
—0.3 105.2731 0.0389 0.3012 1.2578 1.8002
—0.1 94.4052 2.7252 0.2705 1.1631 1.7236
0.1 83.3458 2.4059 0.2392 1.0576 1.6285
0.3 72.0042 2.0785 0.2069 0.9398 1.5089
0.5 60.2092 1.7380 0.1732 0.8070 1.3558
I —0.5 318.3008 9.1885 0.8974 3.0890 3.8392
—0.3 289.6400 8.3611 0.8199 2.9517 3.7600
—0.1 260.5781 7.5222 0.7405 2.7902 3.6619
0.1 230.9572 6.6671 0.6585 2.5989 3.5366
0.3 200.5069 5.7881 0.5733 2.3701 3.3703
0.5 168.7093 4.8702 0.4838 2.0939 3.1397
III —0.5 623.9898 18.0130 1.7262 5.1662 6.0963
—0.3 569.6992 16.4458 1.5815 4.9912 6.0055
—0.1 514.0009 14.8379 1.4327 4.7812 5.8918
0.1 456.3372 13.1733 1.275%4 4.5252 5.7455
0.3 396.0083 11.4318 1.1204 4.2075 5.5495
0.5 332.3302 9.5935 0.9511 3.8015 5.2702
*For general value of #,.
TasLE III
Values of frequency parameter @, for C — S plate
bla = 0.3
Q¢ Q¢
Mode  Values of —
[ * ho = 0.1 ho = 0.01 h, = 0.05 hy = 0.1
1 —0.5 33.7986 0.9757 0.0973 0.4571 0.7819
—-0.3 31.9424 0.9221 0.0920 0.4352 0.7552
—0.1 30.0036 0.8661 0.0865 0,4118 0.7252
0.1 27.9541 0.8070 0.0806 0.3864 0.6908
0.3 25.7472 0.7432 0.0742 0.3584 0.6507
0.5 23.2967 0.6725 0.0672 0.3265 0.6024
1T —0.5 120.8240 3.4878 0.3464 1.5025 2.2730
—-0.3 112.4118 3.2450 0.3226 1.4203 2.1910
—0.1 103.7702 2.9955 0.2681 1.3318 2.0979
0.1 94.8242 2.7373 0.2726 1.2360 1.9911
0.3 85.4508 2.4667 0.2458 1.1312 1.8667
0.5 75.4301 21774 0.2172 1.0143 1.7185
111 —0.5 256.6910 7.4100 0.7284 2.8680 3.9184
—0.3 238.6603 6.8895 0.6781 2.7344 3.8198
—0.1 219.9566 6.3496 0.6266 2.5872 3.7028
0.1 200.4302 3.7859 0.5731 2.4234 3.5618
0.3 179.9014 5.1933 0.5164 2.2376 3.3880
0.5 158.1134 4.5643 0.4542 2.0198 3.1659

*For general value of A,.
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TasLe IV
Values of frequency parameter &, for C — S plate
bja = 0.5
Qc Qs
Mode  Values of —
[ * hy = 0.1 hy = 0.01 hy = 0.05 he = 0.1
1 —0.5 72.8678 2.1035 0.2091 0.9248 1.4289
-0.3 67.3564 1.9444 0.1935 0.8702 1.3785
—0.1 61.7399 1.7822 0.1775 0.8115 1.3198
0.1 55.9771 16159 0.1611 0.7479 1.2505
0.3 49.9982 1.4433 0.1439 0.6785 1.1677
0.5 43.6709 1.2606 0.1258 0.6013 1.0663
T -0.5 251.6171 7.2635 0.7156 2.7481 3.6885
—0.3 230.0375 6.6406 0.6558 2.5998 3.5811
—0.1 208.1654 6.0092 0.5947 2.4340 3.4519
0.1 185.8878 5.3661 0.5321 2.2479 3.2943
0.3 163.0143 4.7058 0.4675 2.0375 3.0990
0.5 139.1888 4.0180 0.3998 1.7969 2.8511
m —-0.5 531.9840 15.3570 1.4870 4.9279 6.0247
—-0.3 485.8330 14,0248 1.3639 4.7234 5.9157
—0.1 438.8280 12.6679 1.2380 4.4847 5.7773
0.1 390.7059 11.2787 1.1084 4.2044 5.5978
0.3 341.1157 9.8471 0.9736 3.8711 5.3591
0.5 289.5779 8.3593 0.8301 3.4654 5.0299
*For general value of #4,.
TaBLE V
Values of frequency parameter &, for C — F plate
bja = 0.5
Q¢ Qg
Mode Values of
« * he = 0.2 hy = 0.05 he = 0.1 hy = 0.2
I —0.5 14.0934 0.8136 0.1930 0.3515 0.5831
—0.3 13.4211 0.7748 0.1841 0.3408 0.5754
—0.1 12.8021 0.7392 0.1763 0.3313 0.5688
0.1 12.2571 0.7076 0.1699 0.3234 0.5641
0.3 11.8210 0.6824 0.1640 6.3172 0.5624
0.5 11.5597 0.6674 0.1254 0.2870 0.5522
11 —0.5 101.8529 5.8804 1.2615 1.9133 2.4332
—0.3 94.6315 5.4634 1.1951 1.8562 2.3967
—0.1 87.3322 5.0420 1.1246 1.7911 2.3561
0.1 79.9320 4.6148 1.0492 1.7160 2.3098
0.3 72.3997 4.1800 0.9663 1.6280 2.2554
0.5 64.6959 3.7352 0.8569 1.5154 2.1859
I -0.5 306.4074 17.6904 3.2878 4.4303 5.0943
—0.3 281.0130 16.2242 3.1279 43104 5.0389
—0.1 255.3090 14.7402 2.9491 4.1674 4.9679
0.1 232.1957 13.4059 2.7437 3.9926 4.8737
0.3 202.5096 11.6918 2.5016 3.7750 4.7457
0.5 174.9482 10.1006 2.2115 3.4989 4.5690

*For general value of k,.
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the second or higher decimal place. For the C — C and C — S boundary conditions
it is seen that the transverse deflection for & = 0.5 is less towards the inner edge and
greater towards the outer edge than the corresponding deflection for o = — 0.5. How-
ever, in the case of the C — F boundary condition, the transverse deflection for
« =— 0.5 is greater than the corresponding deflection for « = 0.5 towards both the
edges except in the third mode at the outer edge. The radii of the nodal circles
decrease as the outer edge becomes thicker and thicker for all the three boundary con-
ditions. In case of C — C boundary condition, the moments for o = — 0.5 are
greater than the corresponding moments for « = 0.5 towards the inner edge while it is
otherwise towards the outer edge. For C — S and C — F boundary conditions, the
moments for « = — 0.5 are less than those for « = 0.5 towards both the edges except
for C — S case in the 2nd and 3rd mode at the inner edge. As regards the lines along
which moments vanish, these are shifted towards the outer edge asa increases.

The frequency parameters computed by neglecting the rotatory inertia term
differ negligibly from the corresponding values obtained by shear theory, leading
to the conclusion that the transverse shear deformation accounts for almost
the entire discrepancy. It is seen that shear theory gives lower values of Q for
all the three boundary conditions and for all plate parameters. Thus the effects
of transverse shear and rotatory inertia must be taken into account in studying the
dynamic response of polar orthotropic annular plates of parabolically varying thickness
for large radii ratio ( > 0.3) and moderately thick plates i.e. Ay > 0.5.
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