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This paper presents a torsion solution, based on Michell-Foppl theory, for a
non-homogeneous circular cylinder of finite length having a rigid spherical
inclusion. The non-homogeneity arises due to variable rigidity modulus g,
The modulus of rigidity follows the law p = wuyr?™, u, being a constant, ma
positive integer and r denotes the distance of a point in the plane of cross-
section from the axis of the cylinder. For different values of m the numerical
values of the shear stress in the cylinder has been calculated. To satisfy the
boundary condition on the surface of the rigid spherical inclusion the solution
in cylindrical polar co-ordinates (r, w, z) has been converted to spherical polar
co-ordinates (p, 8, w). We take the elastic non-homogeneous cylindrical solid
of length 2La and cross-sectional radius e, which has a rigid spherical inclusion
of radius Aa. For a particular case » = 0.5, it is found that the effect of rigid
spherical inclusion on the shear stress t_, is 15 per cent less for m = 0 (homo
case) and for m = 1 and 2 (non-homogeneous case) the effect of rigid inclusion
geneous on the shear stress is 6 per cent and 2 per cent less respectively
compared to the solid cylinder without inclusion.

INTRODUCTION

Solution of the torsion problems of an infinite homogeneous and/or non-
homogeneous circular cylinder having a symmetrically-located spherical cavity and/or
arigid spherical inclusion has been discussed by different authors. Ling (1952),
Chattarji (1957), Chatterjee (1964, 1965), Kanoria (1979a, b) and many others have dis-
cussed the different problems mentioned above. Now, attention is given to the problem
of circular cylinder of finite length instead of infinite circular cylinder. Golovchan (1972)
has considered the torsion problem of a circular cylinder of finite length having a
spherical cavity. Chattarji and Kanoria (1980) have discussed the torsion problem of
a circular cylinder of finite length having a rigid spherical inclusion.

In the present paper the non-homogeneous circular cylinder of finite length
baving a rigid spherical inclusion has been taken. The non-homogeneity arises due to
variable rigidity modulus. The modulus of rigidity follows the law p = ugr3m, u,
being constant and m being variable, r denotes the distance of a point in the plane of
cross-section from the axis of cylinder.
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GENERAL THEORY AND METHOD OF SOLUTION

We assume that an elastic non-homogeneous cylindrical solid of length 2L.a and
cross-sectional radius @ has a rigid spherical inclusion of radius Aa with its centre on
the axis and separated from the ends by a distance La. Let the tangential forces be
applied to the ends which give rise to a torsional stress state in the cylinder and let the
lateral surface be free from stress.

We introduce two co-ordinate systems with a common origin at the centre of the
inclusion; cylindrical co-ordinates (r, w, z) and spherical co-ordinates (p, 8, w). For
convenience r, z and p are regarded as dimensionless quantities, referring to the radius
of the cylinder and z-axis coinciding with the axis of the cylinder.

If u, v, w be the components of displacement along increasing r, w and z respec-
tively and we assume # = w = 0 and v to be independent of w, the only two non-
vanishing stress components are given by

0¢ s

T = pra—r and 7, = ,.‘rg (D)
where p is the modulus of rigidity and ¢ = v/r is the angle of rotation of an elemental
ring of radius r.

In our problem, the modulus being one of varying rigidity, u is expressed in the
form
po= por®™ (2
1o being a constant and m a positive integer.

Equations (1) then assume the form

o L
T, = Forzmﬂn 5’_. and T, = p,orz"'” & (3)
Inserting the expressions of eqn. (3) in three stress equations of equilibrium, we see
that two of them are identically satisfied and the third reduces to
2 2
g;% o+ 2m+3 03¢ | 0% _ 0

r o or 0z%

R )]
under certain conditions at all boundaries of the solids.

We represent the function ¢ as the sum of two terms ¢ = ¢y + ¢, where ¢, is
the solution of the equation (4) for a solid cylinder acted on by an external load and

¢, takes into account the effect on the rigid spherical inclusion on the stress state. The
boundary conditions then take the form

3951 0%,
—_— = 0, —_— = U, =S s
or w1 0Z Lmir 0. ¢ e 0 ©)



TORSION OF A NON-HOMOGENEOUS CIRCULAR CYLINDER OF FINITE LENGTH 223

Following Kanoria (1979a, b), we construct a certain set of solutions for eqn.
(4), {¢%}, each of which satisfies the condition in (5). We then construct the function

¢, from this set by superposition. Considering the symmetry relative to the plane
z = 0 and the second condition in (5) we write the solution of eqn. (4) in the form of
series:

¢ d)(l) + ¢(2)

© .
. 2n+1
D= p +1 E bl 1(Xnl) SID XnZ, Xn= (——n—;L—*)—“ ;

" i o, Pot (cos Ox)
?Sl = ymt+l Z m43 ’ (6)
k=—o00 pk

Here, I, is a modified Bessel function of order (m + 1), ba are arbitrary constants,
P "'1 , is an associated Legendre function; (px, 0%, w) is the kth spherical co-ordinates

system with, origin O, the co-ordinates of which in (r, w, z) system are (0, 0, 2kL) for
k=0, £1, £2,.... It is easy to verify that ¢* satisfies the second condition in (5).
Remembering that

1 P™ (cos 0z) = (—1m 2m + 3) ! (z — 2kL) rm*?
pm+3 m+2 COS k) 2"'+’-(m + 1) ! [(z - 2kL)2 + r2](2m+5)/2
]

we obtain from condition =0 when r=1

24"
or

bnXuln,2(Xn) SIN XnZ

1M

_ (=1 @2m + 3) ! 2m + 5) (z — 2kL) .
- 2mtim + 1) ! [(z — 2kL)?  1]emt02
k=—w
«.(7

Thus the constant b, should be chosen so that the quantities equal to the coefficients
of the Fourier function on the right side of eqn. (7). After some transformation we
have

m 4.2 Km+2(xn) .
" Im+2(xn)

e 2
bn = (—Dmt 3

As a result, we arrive at
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e o]
$* = ,.n}+1 %(——1)"’”’1 z x %Im“(xnr) sin Xnz
n=0

P™F (cos 0x)

[« o]
m+2
rmﬂ z (8)

which is the solution of eqn. (4) satisfying the first two conditions in (5). It is obvious
azs¢*
a Zzs ’
as linear combinations of them. Considering this we represent in the form

that all even derivatives of ¢* with respect to z i.e. have same properties as well

[+ ]
. Az" 823—295*
=2 @521 )

s=1

where As,’s are parametric coefficients to be determined from the boundary conditions
at the surface of the inclusion.

To express the function in terms of spherical polar coordinates the following
relations are useful

as—1 ( 1 ) _ (= Dm2mtim 4 1) ! (25 —1) ! P (cos Bx)

622 8—1 2 +m

2m1.3 23 4m41
or + (2m + 2) ! rm+l pf_j:m

(Hobson 1931)
and

(=2}

Ima(@r) sin pz = (—1)m z én‘_}_)"zl(’(:(?_):";’)"! Pt (cos B)

n=1
(MacRobert 1947)
and also the additional theorem for spherical harmonics (Hobson 1931)

P (cos 0x)

2 +
o z (—1)7*ma, ,ePP™ (cos 6)
254m41
k p=m+l1
;:fm (cosb) 2 .
—_— z a.,pp"Pm+ (COS e)
28 4m41 ?
Pk p=m+1
!
where Ay = 2s+m+p)! L k=12..).

@ +mF D)@ 1)1 @kL)B+smi

After several transformations, we have
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Az(2s —1
$ = ,.,,.H ZI: 2'§s+,,,+1 ) + ptetm z 'Yp,ztAMJ] P25+m (cos 8)

2 1
Yp,28 = (2p _2)' (2S + 2m + l)! [(2.9 + 2P + 2711)' z (2kL)2s+2p+2m+l
k=1

o o]
(—1)rts z a8 +aptom Kmya(xn) 7] :
7 , x, Tmealn) ...(10)
n=

Rewriting the known function ¢, in these same co-ordinates we obtain from third
condition in (5) an infinite system of linear algebraic equations with unknown Ae,

[~ o}
A2s(25 —1
2,\2(s+m+1 ) + PZH"‘ z "{p,?sAzp = bss (S =1,2,..). ...(11)
p=1
Azs(Zs ) .
Letting the unknown = B Xzs, we convert the equation system (11) to the
canonical form,
- 2 1
ptm+
Xas - Atotm (2" Tr Tk = ba (6= 12,0, (12)
p=1

To study the properties of the system (12), we obtain an upper limit for its matrix
elements which are defined by second of eqn. (10),

O )
1
‘ Z (2kL)%st2rt2m+1 (2L)28+2p+2m+ Z )2s+217+2m1—1
k=1 k=1
1 2(2s+2p+2m)
< QLyFFTEmes J@arEm T .(13)

Evaluation of the second sum in vyy,2s is obtained by using asymptotic expressions of
Inys and K2 (Watson 1952) and the inequality

oo

—a+1
E noa-lg=bn < b P(“) (@>0,b>0)
n=0

which follows from the improper integral representing the gamma function,

-}

l Kmia(xn) | ostapiam| _ C2-0stiottm . (25 + 2p + 2m)!  ...(14)
Im+z(Xu) n

n=0
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where C; is a constant.

Taking into account the inequalities (13) and (14) we finally have

205t 2p 4 2m)! 256 1
Yo2e @p —2)1 (@s + 2m + 1)1 | 255 = QLys+iwremi
C
+ m] , ..(15)

For large values of subscripts s and p, the first or second term in the square bracket is
predominant depending on the condition L 1 or L > 1. We rewrite the limit (15) in
the form

1 < Cy(25s + 2p + 2m)! . 1
@ D" | S @2 =D T @s +2m+ 1)1~ Quyietovtmii
(L,L<1
o = . ...(16)
(LL>1

e}
Taking the inequality (16) into account, it is easy to show that the double sum Z
s=1

[+
2 | yp,es | A2+t 222mi1 converges if A < «, i.e. under conditions where surface bound-

p=1
ing the inclusion is not in contact with the lateral surface of the cylinder or its end
planes.

Thus the infinite system of algebraic equation (12) belongs to the class of normal
system. It has a unique bounded solution for any bounded right sides b3, if there is
no non-zero solution for the corresponding homogeneous system (Kantarovich and
Krylov 1958). The sequence {b2s} will be bounded practically always. In particular, if

(—1ym(m + 1) ! 2mit
@m F+ 3) 1

and by, = 0 for s > 1, the homogeneous system cannot have a nontrivial solution

because of the uniqueness theorem for the boundary value problem under discussion.

Am+2

o = Az, b, =

The established properties of the system (12) make it possible to use the reduction
method for determination of an approximate solution.

Note that the use of the above method also allows one to solve the problem of
torsion in a circular cylinder of finite length in thc case where the rigid spherical
inclusion is located asymmetrically with respect to the ends and also where there are
several inclusions with centre in the cylinder axis.

As an illustration, we consider the function ¢, of the form

¢y = Agd* (17



TORSION OF A NON-HOMOGENEOUS CIRCULAR CYLINDER OF FINITE LENGTH 227

i.e. only the first term of the sum (9). We determine the constant 4, for the
system (11)

(=1 (m + 1) ! 202 Am+24)(2m 4 3) !
= A3 ym+2y, . ...(18)

4,

It is assumed here that ¢, = Az.

The stress 7, reaches maximum at the cross-section z == 0, when r = 1, it is given by

0 .
_kedly A2 mﬂ.z m+s_Kmqa(xn)
(Tnz)max == & [1 - i {L ( 1) xn m[m+](xn)
n=0Q
0
" (= D™+ (2m - 3)! 1—(2m + 4) 4k3L2
T 2m+1(m + 1)! (4k2L2+ 1)(2m+7)/2 . ..(19)
k=—c0

Thus the effect of inclusion on the maximum stress v, in a non-homogeneous

cylinder of finite length is expressed by second term in the braces in eqn. (19). The
stress is shown in the third column of the Tables I-III for different values of m and
L =2

TABLE 1 TasBLE 11
m=0 m =1
A As/A usd@tted 2 As/A LI |
0.5 0.95 x 1072 0.8523 0.5 0.503 x 1073 0.9422
0.51 0.104 x 107t 0.8383 0.51 0.57 x 10-2 0.9341
0.52 0.114 x 107! 0.8234 0.52 0.655 x 1073 0.9248
0.53 0.124 x 107! 0.8077 0.53 0.74 x 1073 0.9144
0.54 0.135 x 107! 0.7908 0.54 0.84 x 10°s 0.9029
0.55 0.146 x 10! 0.7735 0.55 093 x 10™® 0.8901
TaBLE III
m=2
A As/A Te gaslip'l)A
0.5 0.183 x 10~ 0.9816
0.51 0,218 x 104 0.9778
0.52 0.259 x 10™¢ 0.9736
0.53 0.308 x 10—+ 0.9686
0.54 0.362 x 10~ 0.9631

0.55 0.462 x 107¢ 0.9566
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From the computational viewpoint the solution proposed above is more
convenient than that presented in Chattarji (1957). Note that the improper integrals
for the calculation of which the numerical method must be used appear in the solution
in Ling (1952). The solution given here contains series which converges rather
rapidly.

The result of Chattarji and Kanoria (1980) follows immediately from the result
of the present paper by taking m = 0.
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