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Let f(z) and g(z) be normalised analytic functions. For « > 0, —=x/2 < 8
< w/2and Re ¢ 2 0, let

F(z) = [(@a+0)z=c [ (1) 1970 di)/®
0

and  H(2) = [(e+c)="¢2 f (g(n)*(1+i tan 8) yey=1 g)1/® (148 tan 9)
0

where ¢, = ¢ — ia tan 0. It is proved that if f(z) is starlike of order p
then so is F (z) and if g(z) is 6-spiral-like of order p then sois H(z). Hardy
classes for the starlike function F(z) and the spiral-like function H(z) are
determined.

Let g(z) be analytic in the unit disc £ = {z: | z | < 1} and 0 be a real number
such that | 6 | < w/2. If g(0) = 0, g'(0) = 0 and Re [e*® zg'(2)/g(z)] > O for zin E,

v v
then g(z) is univalent Spacek (1933) and is said to be 8-spiral-like (Libera 1967).
Under these conditions we have

zg'(2)/g(2) = ¢t [cos OP(z) + i sin 0] ()

where Re P(z) > 0 in E. Further, if g'(0) = 1 (i.e. P(0) = 1) and if in (1) Re P(z) 2 p,
0 < p < cos €. We shall say that g(z) is in Fs(p). It is clear from the definition

that U Fy(p) = Fo(0) = F,, the whole class of spiral-like functions. In
0<p<cos §

particular with « = 0, Fy(p) is the class S*(p) of normalised starlike functions of order
¢, Fy(0) being the class S* of all normalised starlike functions.

We say that an operator is a spiral-like operator, if it is defined on F,, and maps
F, into (or onto) Fe. A fortiori, an operator is a starlike operator if it is defined on
S* and maps S* into (or onto) S*. Consider the integral operator

FG) = (Tf) (@) = [(@rc) == {) £ty 1o drftse, @)

Recently Ruscheweyh (1973, Theorem 3.2) has shown that 7 is a starlike operator when
« > 0and Rec 2 ¢.
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Finally, for X > 0, we say that a function h(z) analytic in E belongs to the

™
Hardy class HA if 1111 § | flre®®) | A d8 exists and is finite.
r

li
>i— —=

In this note, we first extend the above result of Ruscheweyh and prove that T
maps S*(p) into S*(p) (0 < p < 1). With the help of the -operator T we study a
corresponding spiral-like operator T’ (to be defined latter). We determine the Hardy
class to which functions in the classes T(S*(p)) and Te(Fe(p)) belong. Our results
generalise the Hardy class results given by Eenigenburg et al. (1973, 1974).

We first state some known results which we will need in the proof our
results.

Theorem A (Basgoze and Keogh 1970) — A function g(z) is in Fe(p) if and only
if there exists f(z) in S*(p) such that

8(2) = z [f(z)[z]/01*4 tan o) (3
where the branch is choosen so that [ f(z/z)]*/(* 4 tan &) — ] at z = 0,

Theorem B — If P(z) is analytic and Re P(z) > 0 in E then P(z) is in HX for
A<

Theorem C (Eenigenburg 1970) — If f(z) is in S*(p) and is not of the form

f @ = (1——2;‘)2“——0’ for some real ¢ then

(i) there exists e = e(f) > 0 such that (g(z)/z) is in H®/20—eN+s
(ii) there exists € = e(f) > O such that g'(z) is in H®/3-2)+¢
Theorem B can be found in any standard texts.

We now prove the following results.

Lemma 1 — The operator T defined by (2) maps S*(p) into S*(p), when « > 0
and Rec 2 0.

ProoF : A function f(z) is in S*(p) if and only if there exists a function s(z) in
S* such that £ (z) = z [s(2)]*®. A simple calculation shows that
F(z) = (Tf)2) = z[(TS) @)]*® = z [GE)I'*
where G(z) is in S* by Theorem 3.2 of Ruscheweyh (1973). Thus, the theorem is
proved.

Lemma 2 — Let ¢ be a complex number with nonnegative real part and « and
0 are real numbers such that « > O and | 6 | < =/2. Then the operator T, defined

on Fy(p) by the formula
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H(Z) — (Tog) (Z) — [(C-}‘G)Z—Gz j)' (g(t))u(l-h' tan 6) . yop-1 dt]ll(ﬁﬂ"'i tan 9))
(4

is a spiral-like operator and maps Fy(p) into Fg(p), where ¢, = ¢ — fa tan 6.
PrROOF : Let the function f(z) in S*(p) be defined by the formula (3). By

Lemma 1, the function F(z) = (Tf)(z) defined by (2) is in S*(p). Since

HE) = (Tog) (= [ 22T

This completes the proof.

it follows, by Theorem A, that H(z) is in Fe(p).

Let Fu(z) denote the function obtained by replacing f(z) in (2) by the function
K(z) = z[(1—2z)*0-e),

Theorem 1 — Let F(z) be defined by (2) where f(z)is in S*(p), «a > 0 and
Rec > 0.

) Ifo<a 2(1 R then F(z) is bounded unless it is a rotation or

magnitification of Fy, (s (2).

(i) lfa > and F(z) is not a rotation or magnification of Fu(z)

2(l p)
then, there exists e = ¢(F) > 0 such that F(z) is in H/2-pe—lte and
F’(z) is in H{(x/(3—2p)a—1)+¢

| .. o
(i) For « > =g’ Fyau-en (2) isin He forall p < M —p a1 but does

not belong to H*/20~pa-1),
PrROOF : We define
9(2) = (J(@)/2)* = Eo cnz". (5
Since f(z)/z # 0, a single valued analytic branch of g(z) is well defined. If we

write

— c calatc)
G(z) = ntato) z ...(6)

n=

then G(z) isanalyticin | z| < 1. Ruscheweyh (1973, Theorem 3.2) has shown that
G(z) # 0 and

F(z) = 2(GE)Pe. (D
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Further, G(z) satisfies
zG'(2)

GE) + gy = 4.
Hence by (7) and (5)
-
e D = ey — (FR -®)

From (5) and (6), after a brief calculation, we can see that F(z) cannot be a rotation
or magnification of z/(1 — z)*3=P_  Let f(z) also be not a rotation or magnification of
zf(1 — z)*3=¢.  Thus, from Theorem C and (8) it follows that

G'(z) is in HM/@0—pe)te,

Now for 0 <a < 7(1»1__?, G(z) is Dbounded (Duren 1970, p. 91).
Hence by the relation (7) F(z) is also bounded. For a > —?_ﬁ—l_—), we use a result

due to Hardy and Littlewood (Duren 1970, p. 88) and it follows that G(z) is in
HO/2a-pe—+e, Thus, by (7), F(z) is in

H=/@0—pe~1t¢ (¢ possibly different). ...(9)

Next, we show that F'(z) is in H'/G-2pe—1)+< By relation (1), F'(z) = F(z) P(2)/z
where Re P(z) > 0. We take ¢ defined in (9) and choose & so small that

€ > 3(A-te€) A, where A = «/2(1—p) a—1. .. (10€)

A+ e _ 1

K 1 81+
With such a choice of K, p and ¢ are conjugate indices in the Holder’s inequality.
Thus,

Now write p -= where K= (A + €)/(1 + A + € -+ 8A + Se).

P 1F@Is a0 <G | F@E | dops (T PE) |8 doye

-
™
z=re*., By (9) and by Theorem B, it follows that lim [ | F'(z)|Xdb is
r>l— —=

finite. By (10), K > ——

= Hence there exists e = €(F) > 0 such that F'(z) is in
-

Hte(3-2pla—1)+¢_
We use (8) and Theorem C to verify part (iii). This completes the proof.

Remark 1: We note that if f(z) isa convex functionin (2) and 0 < a < 1,
then F(z) is bounded.
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Remark 2: WhenB = 1/a > 0,¢c = 0, (2) is a representation for B-convex
functions (Miller et al. 1973). The bounds for the Hardy class obtained in Theorem 1
when p = 0 are precisely those obtained by Eemnigenburg and Miller (1973) for
B-convex functions.

Theorem 2 — Let g(z) and H(z) be the functions in Fe(p) defined in Lemma 2
and f(z) be the function defined by the relation (3)

(1) fo<ax< , then H(z) is bounded unless f(z) = z/(1 — ¢t z)21-»

1
2(1—p)
where ¢ is a real number.

(i) If e > } and f(2) # z/(1 — e z)*1—¢) then there exists ¢ = «(H) > 0 such
o sec? B

that is i A+ = —
at F(z) is in HAt< where A =g a—1

and F'(c) is in HAN++e
_
2(1—p)°
g(2)= z [(1 — z)~%—e]l/0+i tan @) belongs to H» for all p < X but does not belong
to HA.

(i) For « > the function H(z) obtained in (4) by taking

PrOOF : From the proof of Lemma 2, we see that

H(Z) [ F(2) ](“08“—1' sin 0 - cos 8)
- -—_ Z_

where F(z) defined by (2) is in S*(p). Thus,

sec2 6 z -
.EI—EZ—)E =|~}i(7—)—’exp(tan Barg(ﬂ;l )) (1)
The second term in the right-hand side of (11) is bounded. This, together with
Theorem 1, determines the Hardy class for H(z). For the derivative a proof similar
to Theorem 1 can be easily constructed. This completes the proof.

Remark 3: When ¢ = iu tan 8 and p = 0, (4) is a representation for a class of
Bazilevic functions B(«,3) studied by Eenigenburgh er al. (1974). When ¢ = 0 and
p = 0,(4)is a representation for a class of spiral-like functions generated from

aL — convex functions (Miller ez al. 1973) by the formula (3). Except for notation,

the bounds for the Hardy class obtained in Theorem 2 are precisely those obtained
for the special class of Bazilevic functions B(x, ) by Libera (1967).
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