ON SOME SUBCLASSES OF UNIVALENT FUNCTIONS REPRESENTED BY INTEGRAL

A. K. MISHRA

Department of Mathematics, Indian Institute of Technology, Kanpur 208016

(Received 30 December 1980)

Let f(z) and g(z) be normalised analytic functions. For $\alpha > 0$, $-\pi/2 < \theta < \pi/2$ and Re $c \ge 0$, let

$$F(z) = [(\alpha + c)z^{-c} \int_{0}^{z} f^{\alpha}(t) t^{c-1} dt]^{1/\alpha}$$

and
$$H(z) = [(\alpha + c)z^{-c_2} \int_0^z (g(t))^{\alpha} (1+i \tan \theta) t^{c_2-1} dt]^{1/\alpha} (1+i \tan \theta)$$

where $c_2 = c - i\alpha$ tan θ . It is proved that if f(z) is starlike of order ρ then so is F(z) and if g(z) is θ -spiral-like of order ρ then so is H(z). Hardy classes for the starlike function F(z) and the spiral-like function H(z) are determined.

Let g(z) be analytic in the unit disc $E = \{z : |z| < 1\}$ and θ be a real number such that $|\theta| < \pi/2$. If g(0) = 0, $g'(0) \neq 0$ and Re $[e^{i\theta} zg'(z)/g(z)] > 0$ for z in E, then g(z) is univalent Spacek (1933) and is said to be θ -spiral-like (Libera 1967). Under these conditions we have

$$zg'(z)/g(z) = e^{-i\theta} \left[\cos \theta P(z) + i \sin \theta\right] \qquad \dots (1)$$

where Re P(z) > 0 in E. Further, if g'(0) = 1 (i.e. P(0) = 1) and if in (1) Re $P(z) \ge \rho$, $0 \le \rho < \cos \theta$. We shall say that g(z) is in $F_{\theta}(\rho)$. It is clear from the definition that $\bigcup_{0 \le \rho \le \cos \theta} F_{\theta}(\rho) = F_{\theta}(0) \equiv F_{\theta}$, the whole class of spiral-like functions. In

particular with $\alpha = 0$, $F_0(\rho)$ is the class $S^*(\rho)$ of normalised starlike functions of order ρ , $F_0(0)$ being the class S^* of all normalised starlike functions.

We say that an operator is a spiral-like operator, if it is defined on F_{\bullet} , and maps F_{\bullet} into (or onto) F_{\bullet} . A fortiori, an operator is a starlike operator if it is defined on S^* and maps S^* into (or onto) S^* . Consider the integral operator

$$F(z) = (Tf)(z) = [(\alpha + c) \ z^{-c} \int_{0}^{z} f^{\alpha}(t) \ t^{c-1} \ dt]^{1/\alpha}. \qquad ...(2)$$

Recently Ruscheweyh (1973, Theorem 3.2) has shown that T is a starlike operator when $\alpha > 0$ and Re $c \ge 0$.

Finally, for $\lambda > 0$, we say that a function h(z) analytic in E belongs to the Hardy class H^{λ} if $\lim_{r \to 1^{-}} \int_{-\pi}^{\pi} |f(re^{i\theta})|^{\lambda} d\theta$ exists and is finite.

In this note, we first extend the above result of Ruscheweyh and prove that T maps $S^*(\rho)$ into $S^*(\rho)$ ($0 \le \rho < 1$). With the help of the operator T we study a corresponding spiral-like operator T_{θ} (to be defined latter). We determine the Hardy class to which functions in the classes $T(S^*(\rho))$ and $T_{\theta}(F_{\theta}(\rho))$ belong. Our results generalise the Hardy class results given by Eenigenburg et al. (1973, 1974).

We first state some known results which we will need in the proof our results.

Theorem A (Basgöze and Keogh 1970) — A function g(z) is in $F_{\theta}(\rho)$ if and only if there exists f(z) in $S^*(\rho)$ such that

$$g(z) = z [f(z)/z]^{1/(1+i \tan \theta)}$$
 ...(3)

where the branch is choosen so that $[f(z/z)]^{1/(1+i \tan \theta)} = 1$ at z = 0.

Theorem B — If P(z) is analytic and Re P(z) > 0 in E then P(z) is in H^{λ} for $\lambda < 1$.

Theorem C (Eenigenburg 1970) — If f(z) is in $S^*(\rho)$ and is not of the form $f(z) = \frac{z}{(1-ze^{it})^{2(1-\rho)}}$ for some real t then

- (i) there exists $\epsilon = \epsilon(f) > 0$ such that (g(z)/z) is in $H^{(1/2(1-\rho))+\epsilon}$
- (ii) there exists $\epsilon = \epsilon(f) > 0$ such that g'(z) is in $H^{(1/3-2\rho)+\epsilon}$

Theorem B can be found in any standard texts.

We now prove the following results.

Lemma 1 — The operator T defined by (2) maps $S^*(\rho)$ into $S^*(\rho)$, when $\alpha > 0$ and Re $c \ge 0$.

PROOF: A function f(z) is in $S^*(\rho)$ if and only if there exists a function s(z) in S^* such that $f(z) = z [s(z)]^{(1-\rho)}$. A simple calculation shows that

$$F(z) = (Tf)(z) = z [(TS)(z)]^{(1-\rho)} = z [G(z)]^{1-\rho}$$

where G(z) is in S^* by Theorem 3.2 of Ruscheweyh (1973). Thus, the theorem is proved.

Lemma 2 — Let c be a complex number with nonnegative real part and α and θ are real numbers such that $\alpha > 0$ and $|\theta| < \pi/2$. Then the operator T_{θ} defined on $F_{\theta}(\rho)$ by the formula

$$H(z) = (T_{\theta}g)(z) = [(c+\alpha)z^{-e_2} \int_0^z (g(t))^{\alpha(1+i \tan \theta)} \cdot t^{e_2-1} dt]^{1/(\alpha(1+i \tan \theta))} \dots (4)$$

is a spiral-like operator and maps $F_{\theta}(\rho)$ into $F_{\theta}(\rho)$, where $c_2 = c - i\alpha \tan \theta$.

PROOF: Let the function f(z) in $S^*(\rho)$ be defined by the formula (3). By Lemma 1, the function F(z) = (Tf)(z) defined by (2) is in $S^*(\rho)$. Since $H(z) = (T_{\theta}g)(z) = \left[\frac{F(z)}{z}\right]^{1/(1+i\tan\theta)}$ it follows, by Theorem A, that H(z) is in $F_{\theta}(\rho)$. This completes the proof.

Let $F_{\alpha}(z)$ denote the function obtained by replacing f(z) in (2) by the function $K(z) = z/(1-z)^{2(1-\rho)}$.

Theorem 1 — Let F(z) be defined by (2) where f(z) is in $S^*(\rho)$, $\alpha > 0$ and Re $c \ge 0$.

- (i) If $0 < \alpha \le \frac{1}{2(1-\rho)}$, then F(z) is bounded unless it is a rotation or magnitification of $F_{1/(2(1-\rho))}(z)$.
- (ii) If $\alpha > \frac{1}{2(1-\rho)}$ and F(z) is not a rotation or magnification of $F_{\alpha}(z)$ then, there exists $\epsilon = \epsilon(F) > 0$ such that F(z) is in $H^{(\alpha/2(1-\rho)\alpha-1)+\epsilon}$ and F'(z) is in $H^{(\alpha/(3-2\rho)\alpha-1)+\epsilon}$.
- (iii) For $\alpha > \frac{1}{2(1-\rho)}$, $F_{1/(2(1-\rho))}(z)$ is in H^p for all $p < \frac{\alpha}{2(1-\rho)\alpha-1}$ but does not belong to $H^{\alpha/(2(1-\rho)\alpha-1)}$.

PROOF: We define

$$q(z) = (f(z)/z)^{\alpha} = \sum_{n=0}^{\infty} c_n z^n. \qquad ...(5)$$

Since $f(z)/z \neq 0$, a single valued analytic branch of q(z) is well defined. If we write

$$G(z) = \sum_{n=0}^{\infty} \frac{c_n(\alpha+c)}{(n+\alpha+c)} z^n \qquad ...(6)$$

then G(z) is analytic in |z| < 1. Ruscheweyh (1973, Theorem 3.2) has shown that $G(z) \neq 0$ and

$$F(z) = z(G(z))^{1/\alpha}. \qquad ...(7)$$

Further, G(z) satisfies

$$G(z) + \frac{zG'(z)}{(\alpha + c)} = q(z).$$

Hence by (7) and (5)

$$\frac{zG'(z)}{(\alpha+c)}=(f(z)/z)^{\alpha}-(F(z)/z)^{\alpha}.$$
...(8)

From (5) and (6), after a brief calculation, we can see that F(z) cannot be a rotation or magnification of $z/(1-z)^{2(1-\rho)}$. Let f(z) also be not a rotation or magnification of $z/(1-z)^{2(1-\rho)}$. Thus, from Theorem C and (8) it follows that

$$G'(z)$$
 is in $H^{1/(2(1-\rho)\alpha)+\epsilon}$.

Now for $0 < \alpha \le \frac{1}{2(1-\rho)}$, G(z) is bounded (Duren 1970, p. 91).

Hence by the relation (7) F(z) is also bounded. For $\alpha > \frac{1}{2(1-\rho)}$, we use a result due to Hardy and Littlewood (Duren 1970, p. 88) and it follows that G(z) is in $H^{(1/(2(1-\rho)\alpha-1))+\epsilon}$. Thus, by (7), F(z) is in

$$H^{(\alpha/(2(1-\rho)\alpha-1))+\epsilon}$$
 (ϵ possibly different). ...(9)

Next, we show that F'(z) is in $H^{(\alpha/(3-2\rho)\alpha-1))+\epsilon}$. By relation (1), F'(z) = F(z)P(z)/z where Re P(z) > 0. We take ϵ defined in (9) and choose δ so small that

$$\epsilon > \delta(\lambda + \epsilon) \lambda$$
, where $\lambda = \alpha/2(1-\rho) \alpha - 1$(10)

Now write $p := \frac{\lambda + \epsilon}{K}$, $q = \frac{1}{K(1 + \delta)}$ where $K = (\lambda + \epsilon)/(1 + \lambda + \epsilon + \delta\lambda + \delta\epsilon)$.

With such a choice of K, p and q are conjugate indices in the Holder's inequality. Thus,

$$\int_{-\pi}^{\pi} |F'(z)|^{K} d\theta \leqslant (\int_{-\pi}^{\pi} |F(z)/z|^{Kp} d\theta)^{1/p} (\int_{-\pi}^{\pi} |P(z)|^{Kq} d\theta)^{1/q}$$

 $z=re^{i\theta}$. By (9) and by Theorem B, it follows that $\lim_{r\to 1-} \int_{-\pi}^{\pi} |F'(z)|^K d\theta$ is finite. By (10), $K>\frac{\lambda}{1+\lambda}$. Hence there exists $\epsilon=\epsilon(F)>0$ such that F'(z) is in $H^{(\alpha/(3-2\rho)\alpha-1)+\epsilon}$.

We use (8) and Theorem C to verify part (iii). This completes the proof.

Remark 1: We note that if f(z) is a convex function in (2) and $0 < \alpha \le 1$, then F(z) is bounded.

Remark 2: When $\beta = 1/\alpha > 0$, c = 0, (2) is a representation for β -convex functions (Miller et al. 1973). The bounds for the Hardy class obtained in Theorem 1 when $\rho = 0$ are precisely those obtained by Eenigenburg and Miller (1973) for β -convex functions.

Theorem 2 — Let g(z) and H(z) be the functions in $F_{\theta}(\rho)$ defined in Lemma 2 and f(z) be the function defined by the relation (3)

- (i) If $0 < \alpha < \frac{1}{2(1-\rho)}$, then H(z) is bounded unless $f(z) = z/(1-e^{it}z)^{2(1-\rho)}$ where t is a real number.
- (ii) If $\alpha > \frac{1}{2}$ and $f(z) \neq z/(1 e^{it} z)^{2(1-\rho)}$ then there exists $\epsilon = \epsilon(H) > 0$ such that F(z) is in $H^{\lambda+\epsilon}$ where $\lambda = \frac{\alpha \sec^2 \theta}{2(1-\rho)\alpha-1}$ and F'(z) is in $H^{(\lambda/1+\lambda)+\epsilon}$.
- (iii) For $\alpha > \frac{1}{2(1-\rho)}$, the function H(z) obtained in (4) by taking $g(z) = z \left[(1-z)^{-2(1-\rho)} \right]^{1/(1+i \tan \theta)}$ belongs to H^p for all $p < \lambda$ but does not belong to H^{λ} .

PROOF: From the proof of Lemma 2, we see that

$$\frac{H(z)}{z} = \left[\frac{F(z)}{z} \right]^{(\cos^2\theta - i\sin\theta \cdot \cos\theta)}$$

where F(z) defined by (2) is in $S^*(\rho)$. Thus,

$$\left| \frac{H(z)}{z} \right|^{\sec^2 \theta} = \left| \frac{F(z)}{z} \right| \exp \left(\tan \theta \arg \left(\frac{F(z)}{z} \right) \right). \tag{11}$$

The second term in the right-hand side of (11) is bounded. This, together with Theorem 1, determines the Hardy class for H(z). For the derivative a proof similar to Theorem 1 can be easily constructed. This completes the proof.

Remark 3: When $c = i\alpha \tan \theta$ and $\rho = 0$, (4) is a representation for a class of Bazilevic functions $B(\alpha,\beta)$ studied by Eenigenburgh et al. (1974). When c = 0 and $\rho = 0$, (4) is a representation for a class of spiral-like functions generated from $\frac{1}{\alpha}$ — convex functions (Miller et al. 1973) by the formula (3). Except for notation, the bounds for the Hardy class obtained in Theorem 2 are precisely those obtained for the special class of Bazilevic functions $B(\alpha, \beta)$ by Libera (1967).

REFERENCES

Basgöze, T., and Keogh, F. R. (1970). The Hardy class of spiral-like functions and its derivatives. *Proc. Am. math. Soc.*, 26, 266-69.

Duren, P. L. (1970). Theory of H^p Spaces. Academic Press, New York.

252 A. K. MISHRA

- Eenigenburg, P. J., and Keogh, F. R. (1970). On the Hardy class of some univalent functions and their derivatives. *Mich. Math. J.*, 17, 335-46.
- Eenigenburgh, P. J., and Miller S. S. (1973). The H^p classes for α-convex functions. *Proc. Am. math. Soc.*, 38, 558-62.
- Eenigenburg, P. J., Miller, S. S., Mocanu, P. T., and Reade, M. O. (1974), On a subclass of Bazilevic functions. *Proc. Am. math. Soc.*, 45, 88-92.
- Libera, R. J. (1967). Univalent a-spiral-like function. Canad. J. Math., 19, 449-56.
- Miller, S. S., Mocanu, P. T., and Reade, M. O. (1973). All α-convex functions are univalent and starlike. *Proc. Am. math. Soc.*, 37, 553-54.
- Ruscheweyh, St. (1973). The invariance of Bazilevic functions (German). Math. Z., 134, 215-19.
- Spacek, L. (1933). Prispevek k teorii funcki Prostych. Casopis Pest Mat. Fys., 62, 12-19.