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A class of exact solutions to Einstein’s equations in general relativity for
interacting self-gravitating irrotational fluids and source-free electromagnetic
fields have been obtained for time-dependent plape-symmetric metric. The
physical consequences of some of the solutions have been discussed. It has
been observed that in the absence of source-free electromagnetic fields, one of
our solutions reduces to the solution obtained by Sistero for nonstatic plane-
symmetric zero-rest-mass scalar field equations.

1. INTRODUCTION

In recent years, self-gravitating fluid distributions have been studied in the frame-
work of general theory of relativity by several authors’ viz., Tabensky and Taub (1973)
for plane symmetric metric, Letelier and Tabensky (1974) for Einstein-Rosen metric,
Letelier (1975) and Ray (1976) for Marder’s metric, Ray (1978) for conformally flat
metric. In all these work exact solutions to Einstein’s equations have been obtained
under various physical assumptions. Wainwright et al. (1979) has considered the
field equations correspond to the self-gravitating fluids p = p in the frame-work of
general relativity and have shown that the solution of these field equations admit
a two parameter Abelian group of local isometries and represent inhomogeneous cosmo-
logical models. The present paper deals with finding out of exact solutions of the
Einstein’s field equations with interacting self-gravitating fluids and source-free electro-
magnetic fields as source. Though, the present work may be regarded as a special
case of the work of Wainwright ef al. (1979), yet the exact solutions found here may
give some physical insight for the particular distribution.

It is well known, the results for self-gravitating fluid distributions in general
relativity apply to the situation where the source of the gravitational field is a
zero-rest-mass scalar field, since such a source has the same stress-energy tensor as
an irrotational fluid with p = p. The problem therefore may also be looked upon
as the problem of interacting zero-mass scalar fields and source-free electromagnetic
fields, which have been studied separately by various authors (Rao et al. 1972, 1973).
We have studied the problem for various cases, by considering different components
of Fi; to exist. One of the solutions have been obtained by reducing the original
metric with the help of characteristic coordinates, following Tabensky and Taub (1973).
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It has been observed that one of our solutions, in the absence of electromagnetic
fields, is identical with the solution obtained by Sistero (1976) for plane-symmetric
zero-mass-scalar field distributions. Some of the solutions have been studied for
their singular and other physical behaviour. All the solutions obtained, satisfy the
reality conditions viz.,, the Hawking-Penrose condition (1970) and the energy
condition.

2. FieLD EQUATIONS

The Einstein field equations for self-gravitating perfect fluid with pressure p equal
to rest-energy density p and four velocity u; are given by

Rij = —oio; 1)
(0o = (4 —g0cig)j=0 ...(2)
when irrotationality is imposed viz.,

Gy

U = (oraMi ° ...(3)
The pressure p and energy-momentum tensor T;; are related to o by

p=p = toc*
and

Ti; = 20i6; — gijorc”. ...(4)

We have chosen the units so that the velocity of light ¢ = 1 and Newton’s constant of
gravitation G = 1/8x. A comma after an unknown function implies partial deriva-
tive w.r.t. the index. When the source contains, in addition to the self-gravitating
fluid, source-free electromagnetic fields, the Einstein’s equations become

Ri; = —oio; — (§%FuiFv; — 18iiFspF*?) -..(5)
and

Oc = (/g oighs=0 ..(6)
with the Maxwell’s equations

Fi; = Ai,y — Ajy
and

Frijg = 0. (D
These field equations for the plane-symmetric metric

ds® = ex(dt? — dx?®) — e¥(ay? + dz%) ...(8)

where o and v are functions of x and ¢ only, assume the form
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2 —
oy ~— oy + 2vyy + v — oy — apv, = —26% — eV(FE, 4 FZ,

+ F3o + F3y) — e>Fi,

2 2 __ 2
Vgg — vy + vi —vi = —e*Fi,

2 2 — 2 2
Oy — Oy + 2vg + VE — agvy — oy, = —205 — eV(Fi, + Fi,

+ Fi4 4 F3,) — e™F3,

2vyy + vyvy — oy — gy = —2010, + 26 (Fpafoy + FisFyy)

FioFyg — FpuFyy = 0
Ffz — F}; = F224 - F324
and

631 — Gy + oyvy — oy, = 0.

3. SOLUTIONS

We have solved the above equations for two different cases viz.,

(a) when F,, = 0 but Fy,, Fy,, F;, and F,, are nonzero;
(b) when F, 5 0 but other components are zero.

Case 3(a)

In this case we assume that Fy, = 0 but F,,, F,,, F;3 and Fy, are nonzero.

255

..(9)
...(10)

(1)
- (12)

..(13)
...(14)

...(15)

Let

us denote Fyy = —¢,, Fy3 = —,, Fyy = ¢, and Fy, = ¢,. Then the reduced field

equations are

(%1 — wgg + 2vy1 + v — ogvy — agvy)

= —206f — eV(¢1 + 41 + 41 + ¢3)
Vo — V¥V Fvi—vi=0

2
Ogqg — &qq + 2\‘44 + Vg — 0yVg — gV

= — 203 — (@1 + 1 + 61 + ¢2)

2vig + vivg — Bgvg T RgYy = —20,04 — 2™ V(¢a1ds + dndo)

$19r — daby = 0
$1 — i =43 — di
613 — G4 + 63 — oy, = 0

$n — Pag = 0
and

Y11 — Yug = 0.

...(16)
(17

...(18)
.(19)
...(20)
.21
. (22)
(23)

(24)
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We have considered the following subcases to solve the above equations
3@).l. ¢=0, ¢5#0,
3@)2. ¢7#0, ¢=0,
3@)3. ¢5£0, ¢#£0.
Subcase 3(a).1
We have one of the solutions of eqn. (17) as given by
v = log (kyx + kot + ky), ...(25)

where k;, k,, k, are arbitrary constants of integration. Using the above result, (16)
and (18) yield the single equation

ki — k3

— — —_ 2 __ 2
2y ) T 1 Fogf + TP 2(a? 63). ...(26)
If we now consider
k2
2 __ 1
20 = Gox T Kot T
and
k2
2 2
208 = Gm T kot T K
we get
6 = —1 log (kyx + kgt + k). (27)

V2

The above value of o satisfies the eqn. (22) identically. With this value of o, (26)
reduces to

“11 - ““ = O. ...(28)

Substituting the value of ¢ and using (28), the eqns. (16) and (18) become

kyay + kyxg = ($I + ¢3). ...(29)
Also (21) and (24) yield

¢ = F(x £+ 1).
The equations (29) and (19) then assume the form

klocl -+ k2G4 == 21;"2 .-.(30)
and ’
Kooy + Kyay = 2F (3D
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respectively, where a prime denotes differentiation w.r.t. the argument (x + t). From
(30) and (31) we now have

(ky — k) (g — ) =0
which implies either &k, = k, or o; = a,.
Let us first consider «; = a,, for which (30) and (31) reduce to

P2 = (ﬁj—"i)al. .(32)

This equation involves the two yet unsolved unknowns viz., « and ¢. Considering a
solution of « (say), given by (28) the eqn. (32) can be solved for the other unknown
¢. Alternately, assuming a solution ¢ given by (24), the equ. (32) yields the unknown
a. Thus for every value of ¢ [satisfying (24)] or « [satisfying (28)] we can have
different sets of solutions for ¢ and «, the other unknowns (viz., v and o) are deter-
mined by (25) and (27).

Considering a well-known solution of (28) in the form
a=log(x+1) +a
we have, the final set of solution as given by
a=log(x+ 1)+ a
v = log (kyx -+ kot + k3)

1
o = 72‘ lOg (k]_x -+ kat + ka) (33)

and .
$ = {2(ky + ky) (x + 0}z

Again, assuming two well-known solutions of (24) in the form
F = eol@tt)

and
F=1log(x+ 1) +a

we have two more sets of solutions as given by

a
k1+k2

o = eSG(a:H) + b’

1
°=—3 log (kyx + kgt + ky)

¢ = ext=td -(34)
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and

2
N (ky + k) (x+1)°

v = log (kyx + kit + ky),

1
6 = ";’/7 IOg (klx -+ k2t + ks),

o=>

¢ =log(x+ 1)+ a, ...(35)
respectively. 1t is to be noted here and in what follows that the case k, = k, leads
to the vanishing of the curvature invariant R.
Subcase 3(a).2
The case when ¢ # 0 but ¢ = 0, can be dealt with similarly.

Subcase 3(a).3
The solutions of (23) and (24) are respectively given by

p=fx+0D+ex—1

and
$ = F(x + 1) + G(x — t).

Substituting the values of ¢ and {, eqns. (20) and (21) assume respectively the form
(f"+HF+G)=(f"—8g)F —G)

and
(f +8P—F +GP=(f—gP—F —G)

which on simplification yield

Thus, either
F? 4+ f2=0, or G? 4 g'%2=0,

As the sum of two square terms equals to zero implies that the terms themselves are
equal to zero, we have two possibilities viz.,

either F’ and f’ are zero or G’ and g’ are zero.
Thus we have the following two subcases
3(a).3.1. ¢ and ¢ both are functions of the argument (x 4 t);
3(a).3.2. ¢ and ¢ both are functions of the argument (x — ¢).
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Subcase 3(a).3.1

For this case we assume ¢ = Ay. As in the subcase 3(@).1, we have from (17)
and (22), the solutions of v and o as respectively given by

vy = log (k]_x -+ kgt ‘I“ k3)
and

1
G = W log (klx + kzt + k3)‘

With these values of v and o, arguing as in the subcase 3(a).1, we are finally left with
the single equation

’2___(k1+k2) ’
B2 =0 +ay *

Hence, for different values of « and F, we have the following sets of solutions:

o = log(x + t) + a, v = log (kyx + kst 4 kj) ']l
¢ — :/17 log (kux + kat - k), L
|
_ V2Uky + k) (x + D\ [(V2tR) L M
b= a{ T O = A e
...(36)
o = al + 4% e2at=tt) L by = log (kyx + kot + k) \]
(ky + k)
1 L .(37)
5= 73 log (kyx + kot + ky), ¢ = eo®+t), ¢ — A} Jl
and
2
@« —b — @ %E’lkj);(lxi )j_“{) , v = log (kyx -+ kyt -+ kj) \l
2, ' }.
c=—\;Tlog(klx+k2t—i—k3),¢=10g(x+t)+a,4>=Aq/ JI
...(38)
Case 3(b)

When only F, is non-zero but other components of the electromagnetic field
tensor are zero, the field equations are:

%yy) — Oy ‘J(" 2Vu + V% — OyVq — “4\)4 = — 26% —_— e_mF§4 ...(39)
2 2
vag — v + vi —vi = — €*Fi, ...(40)
— 2
®yq — G531 + 2‘144 + Vi — MgV — Yy = 26‘:‘, — € EF14 ...(41)

2V14 + ViVg — BVy — Ggyy = — 2610'4 ...(42)
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on + oy — 64 — ov, =0, ...(43)

0 (pud gy —

o P —g) =0 . (44)
and

—gt— (FoN Zg) = 0. ...(45)

Following Sistero (1976), assuming a functional relationship between the metric
parameters in the form

a=5b—v ...(46)

and further assuming another functional relationship between ¢ and the metric para-
meter v in the form

c=ucv+d ..(47)
we get after straight;forward calculations the final form of the solution as given by
ay = log {a(k,x + k,t) + kj}, )
=b—=v,06=cv+d, (} ...(48)
Fa— {UE2 G k) e }
2 (a(kyx -+ kot) + k) )

where
a = (2c% 4+ 3)/2.

4. SOME MORE SOLUTIONS
In this section, we present some more solutions obtained by transforming the
original metric with the help of the characteristic coordinates given by
u=1t—x and v=1¢-+ x. ...(49)
Using (49), the metric (8) reduces to the form
ds* = e*dudv — e¥(dy? + dz%) ...(50)

where « and v are now functions of # and v. The non-vanishing components of the
Ricci-tensor for the metric (50) are

v )
Ruu= Vuu + —2— — GuVu l
|
|
l

e\l—

*
3 (V uv + VuVo)

Ryy = R;e = —

(equation continued on p. 265)
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. (51)

vZ
v

an = Voo + —2—— — OyVy

and

L——_——V‘

Ruv = vuy + %VuVu + Ous

In this case we obtain the solutions for the case when F,, = 0 but Fio Fiay Fyy, Fyy
are nonzero. Denoting Fy, = — ¢u, Fi3 = — {u, F;y = ¢o and F, = ¢, the Einstein
field equations (5) - (7) become,

vau -+ 3] — dwvu = — o2 + e($2 + ¢}) (52)

Ve ‘{“ ‘%Vj — GyVo = — 0'3 -+ e“'(¢j + 4)'2, ) (53)

Vuy %Vu‘lv + duv = — 0uCy "'(54)

(€)ur = 0 ...(55)

Cup = — %(O'u\lv + O'vVu) (56)
4 0

2y B+ o (@) =0 (57
0 0

o Wy + 5 () =0 ...(58)

and |
()Su¢v = ‘«pukpv- (59)

From (359), we have the following possible cases:
(4.1) ¢ is function of « and ¢ is function of v
(4.2) ¢ is function of v and ¢ is function of u
(4.3) ¢ and ¢ both are functions of « and v.

Case (4.1)
Equation (55) has a general solution given by

v = fu) + g0

For convenience, we consider the case when v = f(u) + A where f is an arbitrary
function of u only. The eqn. (56) on integration yields

6 = Be %y + y(u) ...(60)
where n(x) is any arbitrary function of ¥ and B is an integration constant.
From (54) we obtain « as given by

o =c¢ — By | eVipudu — ;BMie. ...(61)
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Now using the above values of ¢, v and « in (52) and (53), ¢ and ¢ are easily obtained
and the solution finally assumes the form

o = ¢ — $B%W%eY — By | e~V/%,du,

v =4 + f(u), 6 = Bve™ + n(u), § = Bv + D, (62

¢ =1 e (vuutIv] + n3 )2 du,

L..__Y._._-_J

where 4, B, C and D are constants of the integration.

Case (4.2)
The case when ¢ is a function of v and ¢ is a function of u can be dealt with
similarly.

Case (4.3)
From eqns. (57) and (58) we have

¢ =f(u) + g and ¢ = F@u) + G).
Again from (59), we get

fugo + FuGy
which implies
o _ G _
F.o T g A (constant).
Thus we have

$ =)+ g0) and § = | [ + Ag0).

From (55), we get
v = () + pu().
Considering as before v to be a function of u only i.e.,
v =)+ B ...(63)
we get from (56), after a straight-forward calculation
o = cve’? | h(u).
Using the value of v and ¢ in (54), we have
&« =D — i3 — cv [ hye V2 dy,

The functions f and g determining ¢ and ¢ are then obtained from (49) and (50)
with the help of v, «, o in the form
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70 = g [ G 12+ B (69

and
1
g(V) = (TW cv + E.

Hence, the final form of the solution is given by
o =D — L — cv [ hue=v2dy,

v="Ff(u) + B, o =cv+ e 2+ hu),

4 cv
¢ = d -+ A% ] (vuu -+ %Vi + hi W2 V2 du + I + A%ie + E,
— 1 1,2 2\1/2 ,v/2 L Ac
Y= T amin | Ouwt B E R PR Ryt a T v + F.

...(65)

5. DISCUSSIONS

It may be observed for all the solutions presented in section 3, that ¢ and v
remain the same and depending on the choice of ¢ and (or) ¢, the other metric para-
meter « is affected.  Alternately choosing « properly, the electromagnetic components
¢ and ¢ are determined.

The pressure p given by

P = % os0°
for the metric (8) reduces to the form
p =} e*(ci — of).
For, the solutions of section 3 it can be easily observed that at the source, the pressure

in having a finite value and it tends to — 0 as x = oo, The four velocity vector u4
given by #* = ¢%/(ss0%)/2 is also having a similar limiting behaviour as the pressure.

The solutions represent divergent gravitational and self-gravitating fields o as
either x - oo or # — oo or both.

The solutions satisfy the relation w = [(FiF*)? 4 (FiyF*%?] = 0, implying
thereby that they represent null electromagnetic fields. It may be observed that in the
absence of the electromagnetic field one of the solutions reduces to that of the solution
for plane-symmetric zero-mass scalar fields obtained by Sistero (1976).

We have observed that the two reality conditions viz., the Hawking-Penrose
condition (Tav — % Tgav) uu® > 0 and the energy condition Tautu® > 0 are satisfied
for our solutions.
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For the physical distribution considered, the eigenvalues, characterized by the
determinantal equations

are found and it has been observed that two of the eigenvalues are equal and the
other two are equal and opposite. It may be noted here, that the presence of the
electromagnetic field does not alter the eigenvalue behaviour of the solutions.
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