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Employing Biot’s theory for wave propagation in porous solids, the frequency
equation for torsional vibrations of composite poroelastic cylinders, either con-
centric or bonded end to end is obtained. The variation of frequency is display-
ed graphically. The results of classical theory are obtained as a particular case,

1. INTRODUCTION

The basic formulation for propagation of stress waves in liquid-filled porous
media is due to Biot (1956), whose model consists of an elastic matrix permeated by a
network of interconnected spaces saturated with liquid. An account of further
researches based on Biot’s work is given by Paria (1963). Using this theory, we the
author studied some problems of torsional vibrations. The purpose of the present
paper is to study the torsional vibrations of finite composite poroelastic cylinders. (See
Tajuddin 1978, Tajuddin and Sarma 1978a,b, 1980).

A composite poroelastic cylinder can be formed either by joining two cylinders of
different materials at plane ends or by joining concentric cylinders to have a common
curved surface. In this paper, torsional vibrations of two different types of finite
composite poroelastic circular cylinders is studied namely (i) a hollow composite poro-
elastic cylinder with two concentric cylindrical layers having a common curved surface
and (ii) a solid composite poroelastic cylinder bonded end to end. The frequency
equation in each case is obtained. In the former case, the variation of frequency with
inner cylinder thickness is studied for the lowest symmetric and antisymmetric modes.
In the latter case, the variation of frequency with change in ratio of lengths of cylinders
for the least mode of vibration is presented. By neglecting liquid effects, the results
classical theory are recovered.

2. Basic EQUATIONS

In the case of torsional vibrations, the non-zero stress components in terms of
displacement are
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The non-trivial stress equations of motion without body forces are

00r , 0Caz |, 20, N o
ara T 8? i t = (putie 1 p12Us)
grad o = (pygiis + pa2Us) ...(2.2)

where a ‘dot’ over a quantity indicates differential coefficient with respect to time, f.
The remaining symbols are the same as used by Biot (1956). The dilatations of solid
and liquid are zero, so the excess pore-pressure (o) developed in solid-liquid aggregate
is zerro.

3. TORSIONAL VIBRATIONS OF A FINITE HoLLow CoMPOSITE POROELASTIC CYLINDER

Torsional vibrations in a finite hollow concentric composite poroelastic cylinder
of different materials are considered. Let r. 8, z be cylindrical polar coordinates with
~ z-axis along the axis of the cylinder. Let the materials be homogeneous, isotropic and
the length of cylinder be 2c. Assume the radii of outer and inner core be r, and r, and
interface is r = a. 1In this case, the non-zero displacement is

ug = v(r) {:lons (kz)} exp (ipt), Us = V(r){:?rf (kz)} exp (ipt). ...(3.1)

cos (kz) or sin (kz) is taken according as the motion is symmetric or antisymmetric
about the central plane. Substitution of eqn. (3.1) into equations of motion (2.2)
gives

d?y 1d 1

E;.JFTE;jL(qz_rT‘)v:o (32)
where

2= — k%, 5% = pg(—__ﬂpllpjép;: pie) ...(3.3)

From eqns. (3.1) and (3.2), one obtains
oy = Lo T(asn) + ewYilan] { S (i) fexp o0, = 1, .04

J = 1, 2 refer to the quantities of outer and inner cylinders.

The pore-pressure vanishes identically. The boundary conditions are:

On the curved surface

At r=n (6re), = 0, ky =k,
r=r (6'3)2 = 07
r=a (679)1 = (0‘,-0)2, (u0)1 = (uﬂ)zp .(3.5)
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On the plane ends

6o =0 forz = L c. ...(3.6)
The boundary conditions on the curved surface gives four homogeneous equations in
four unknowns ¢,;, ¢4, €13, Cas-

The requirement for a non-trivial solution yields the frequency equation to be

— No@o{ —Jo(q:ir) Y1(9:19) -+ Yo(qir1) Ji(q10)} WI

X {Jo(qar2) Yo(q:0) — Yo(qars) Jo(q:0)} |>

+ Nigy {o(qiry) Yo(410) — Ya(gard) Jo(410)} |

|

X {Yy(qare) Ji(g2a) — Jo(gars) Yi(q:a)} = 0. J

Let the outer casing of the cylinder be very thin and its stiffness large compared

to that of core material, that is ri/a — 1 and N;/N2 — oo, respectively. With these

assumptions, the frequency eqn. (3.7) becomes indeterminate at r; = a. Hence, by

taking Taylor’s series expansion in the neighbourhood of r/a = 1 and letting

N, = N, ((r1/a) —1)71, the frequency eqn. (3.7) will be modified to

[Y2(qar2) J1(g20) — Y1(g:a) Jo(qara)] + q2k2a [ Jy(qers) Ye(q:0)

—Yy(gers) J1(g20)] = 0. -(3.8)

The boundary conditions on the flat ends give sin (k¢) = 0 or cos (kc) = 0 according
as the motion is symmetric or antisymmetric. This is satisfied only when

(3.7

kc = nym, ke = (2n, + 1)—;, ...(3.9)

where n, and n, are positive integers.

The frequency eqn. (3.8) can be rewritten in non-dimensional form as

[Ya(xp) J1(x) — Ya(x) Jo(xp)] + k72 c=%(a?/c?) [Jo(xy) Ya(x)

— Ye(xp) Ju(x)}] = 0 ...(3.10)
where
my = %1, me = —ef-, m; = _P_:E,f__:%
and
p = pu + 201 + a2 €3 = Nfp. ..(3.11)

By neglecting liquid effects in eqns. (3.10), the frequency equation of classical theory is
recovered.
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The non-dimensional frequency eqn. (3.10) can be solved, f as a function of y,
for a particular cylinder and for a particular mode. Let the dimensions of the cylinder
(diameter-thickness ratio a/c) be 0.1, 0.2, 0.5and 1. The value of k¢ required in eqn.
(3.11) is determined from eqn. (3.9), according as the motion is symmetric and anti-
symmetric. Let these values be (n, = )1 and (n, = )0, respectively and material
constants required in the problem are considered to be

my = 0.8, my = 0, my = 0.2.

The variation of frequency (/) with inner radius ratio (p) is presented graphically
in Fig. 1 for symmetric and antisymmetric motion.

From Fig. 1, it is observed that for symmetric motion, the value of frequency
upto inner radius ratio is equal to 0.6 remains almost constant except for diameter
thickness ratio is equal to 1. For diameter thickness ratio is equal to 1, frequency

SYMMETRIC MOTION

of=t

= = =ANTISYMMETRIC MOTION

FiG. 1. Variation of frequency (f) with inner radius ratio ().
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decreases as inner radius ratio increases. From y = 0.6 onwards, the slope of the
respective curves increases. The above conclusions are true for antisymmetric motion
too. Further, the frequency is found to be less in antisymmetric motion when com-
pared to its corresponding values of a/c (except for 0.5) for symmetric motion. At
y = 0.75, the value of frequency for symmetric motion (a/c = 0.1) and antisymmetric
motion (a/c = 0.2) are equal and from thereonwards respective frequency curves are
coincident. In general, it is observed that frequency increases as diameter thickness
ratio increases.

4. TORSIONAL VIBRATIONS OF A SOLID COMPOSITE POROELASTIC CYLINDER

The torsional vibrations of a solid composite poroelastic cylinder bonded end to
end of different materials are considered. Let the interface of cylinder lies at z = 0

and other flat surfaces lieat z = cand z = — /. The propagation mode shapes in
this case can be written from eqn. (3.4) in the modified form as
ug; = Jy(gqir) [ci; cos (ksz) + cyisin (ksz)} exp (ip2), (j = 1, 2). ...(4.1)

J = 1, 2 correspond to different materials on two sides of the interface. The boundary
condition to be satisfied on the curved surface is,

at r=a, org = 0.
This gives

Jo(gsa) =0, j=1,2 .(4.2)
Putting

=49 =4

eqn. (4.2) determines ga for different modes of vibration. The values of it are given
in Abramowitz et al. (1965). In particular, the first four mode of vibration are

ga = 0, 5.136, 8.417, 11.62.
The boundary conditions at the flat ends are
at z=oc, (cez)y =0
z=—1, (6¢z); =0
z =0, (o), = (t0)2, (00:)1 = (G02)s- ...(4.3)

The pore-pressure (o) satisfies identically. From eqns. (2.1), (4.1) and (4.3) four
homogeneous equations in four unknowns are obtained. The requirement that the
determinant of the coefficients must vanish gives the frequency equation to be

tan (kyc) _ Ngks
tan (k,1) =~ Nk,

From eqns. (3.3) and (4.4), one obtains

..(4.4)
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tan [(3 — ¢P\%] _ N} — g “s
tan [(s3 — ¢®)'2] ~  N(st — g2 ...(4.

The frequency eqn. (4.5) can be expressed in non-dimensional form as

2,1 __ o avam [ € @ £2,,2) 2 a3
ta“[(f"“ 7 (a)]: B — e . (46)

tan l:(fgmiz) - q202)1/2. (é_)] ﬁ(”(fzmin . qzaz)uz

where = N/H, H = P + 2Q + R. The superscripts 1 and 2 in brackets correspond
to the two different materials. When liquid effects are vanishingly small, the results of
classical theory are obtained as a particular case.
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FiG. 2. Variation of frequency (f) with respect to ratio of lengths of cylinder (//c).
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The frequency eqn. (4.6) is an equation involving frequency (f), mode of vibra-
tion (ga), diameter-thickness ratio (a/c), material constant (m,), shear modulus (8) and
change in ratio of lengths of cylinder (//c). The frequency (f) is computed from eqn.
(4.6) corresponding to a given value of ratio of lengths of cylinder (//c) taking the
following data for the least mode of vibration, viz.,

m = 0.65, m{ = —0.15, m{¥ = 0.65, BV -- 0.21

mP =038,m® = 0, m? = 0.2, = 0.25, a/c = 0.20.

The frequency versus ratio of lengths of cylinder is exhibited graphically in Fig. 2.

From the figure, it is noticed that frequency is zero at //c = 0. In the interval
(0, 0.8) of J/c, the frequency is found to increase whereas in the interval (0.8, 1) fre-
quency decreases.
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