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Letcg, €1, €2y o005 oens cpy be a sequence of mutually independent normally
distributed random variables with mathematical expectation zero and variance
unity. Let ¢o(x), é1(x), ¢.(x),..., ..., pu(x), be a sequence of classical ortho-
normal polynomials and ay, a1, @,, ---» -+, @n; @ sequence of constants which
when multiplied by ¢o(x), ¢1(x), .-+, ¢n(x), in order, normalise them over the
fundamental interval of the harmonic functions ¢x(x). It is proved that the

n
mathematical expectation of the real zeros of 2 ¢pay ¢$i(x), which lie in the
k=0

fundamental interval is equal with n/v’S, asymptotically as n— oo,

Let ¢, ¢35 €55 +-., ... DE a sequence of mutually independent, normally distributed
random variables with mathematical expectation zero and variance unity. Let
o(x), $1(x), H2(x), ... be a sequence of real valued polynomials (functions) and
ay, @1, a,, ---, a sequence of real constants. The real roots of the equation

co ao po(x) + €1 a1 $1(x) + c2a:6:(x) + ... + Caanpn(x) = 0,
have been considered by various authors. J. E. Littlewood and A. C. Offord had
shown, in the year 1939, that when ax = 1, ¢u(x) = x* and n is large most of the
equations have atmost 25 (log n)* real roots. When g, = 0, ai=1 (k#0), ¢.(x)=cos k
(cos1x), J.E.A. Dunnage has shown that most of the equations posses nearly 2n;/3
roots in the interval (—1, 1), when » is large.

Now the x*s are a set of functions monotonic in (- oo, 0] and [0, o), where-
as cos k (cos1) oscillate k-times between—1 and +1. This raises the question as to
how far the oscillatory nature of é«(x) is transferred into the sum Z ¢ ax $u(x), or
what is the same thing how many times the last sum passes through zero, the mean
value of T cxor ¢« as x varies over a prescribed interval. In this work we consider
the cases when the ¢i’s are the classical orthogonal polynomials over some interval
{bounded or not), since the oscillatory natures are very accurately known. We hope
that our results here will substantially remain the same when the coefficients belong
to domain of attraction of stable law.

When the interval of definition is changed into one of the three standard inter-
vals [--1, 1], [0, o), and (—o<,00), the classical polynomials bear the names Jacobi,
Laguerre and Hermite. There exists weight function «(x), corresponding to the
interval concerned, over which the integral «(x) ¢&°(2) is positive number g, and we
take a; = g« /2. The integral of ¢i(x) = af ¢2(x), over the corresponding interval,
is unity so that each term of = cx $u(x) = cx ax $x(x), has the same weightage in the
same sense. We shall show that in each case, when n is large, the set of equations
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may be expected to have at least c.n real roots (¢>0), i.e. the oscillatory property of
Yi(x) is also shared by the sum I ¢, §u(x). Indeed, most of the sums of the last
type also perform a pon-zero portion of the maximum number of oscillations possible
for ¢(x), as x varies over the fundamental interval once only.

We shall denote the number of real roots of /‘Z cx Yk (x) = 0in the interval
=0

(a, b) as N, (.;a,b) Das (1971) has considered the case when i (x) = awPu(x) = Pr*
(x), the normalised Legendre polynomials. He has derived the formula for the mathe-
matical expectation of N, (. ; g, b) in the form

b

ENn(' . a, b) = _11; [fn (X) dxa

Se(x) + Re(x) 1 Qi(x) (1)
NE) 4 "Di(x)

with Dn (x) = ¢,,1(x) ¢a(x) — ., ()di(x)=Z ¢; (x) > 0
On (1) = $tes (s ()= raa(x) d1(x)
Re(x) = 4 [ )b () — diy () (x)]

where f*(x) =

and S, (x) = & ["’:L‘f‘) TCREICERCHE

The cases of Jacobi, Hermite and Laguerre polynomials will be considered in
the sections 2, 3 and 4 respectively.

. . (xsB)
§2. For«a >—1and 8 > --1, the Jacobi polynomials P : (x) form an orthogo-

nal set over (—1, 1) with weight function (1 —x)> (1 +x)® the ge being determined
by (Rainville 1960, p. 260).

To compute the D, (x), etc. we shall use the relations (writing y»=y, (x)) for
P,(*® (x), (Erdelyi et al. 1953, p. 169).

(l_xz) Vi1 = [“—B+(1+B+2) x-] Yrgr — (”+ 1) (n+2+°‘+ﬂ) Y1
d
(2)
(1—x) yr = [a—ﬁ+(a+ﬁ+2) x:]y'n —n(n+l+atBny. —(3)
Multiplying (2) by ! and (3) by »¥), and subtracting, we obtain for k = 1, 0,

respectively the relations

1—x? ;
(- ( Vaer Yo —Vin y',,\’ = n(n+1+atp) (_Vn'u Yo — Vanr y;\

— (2n+2 + a+B) yns1 y, (4
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(1—x?) ( Yn+1 Vo —Vn yn+1)= [d—ﬂ+(°‘+ﬁ+2)x] ( Yo'ry Yn =¥ }’n+1)
—(2n+2+°‘+ﬁ) Vn Va+a. (5)
If we differentiate (2) and (3) we get y;4, andy;*. Multiplication by y. and y,,,

and subsequent subtraction yields, after some simplification the relation
(1—x?) ( Vi1 Yo —Vus1 yﬁ)’—’An (x) ‘\ Vel Yn —Vns1 yrl;)

— B (x) pns1 Yu—en (x) Y2 ..(6)

where (1—x?) 4, (x) = [u——ﬁ + (a+8+4)x] [a—B+(a+B+2)x ]
—n(n+1+atB)+atpf+2

(1=%) B, (x) = Qn+2+a+B) [«—s+(a+a+4)x ] +at1)

[ a—B—(2n+2+a+B)x ] (A—xD cn(x) = 2 (rn+1+«) (n+1-+p).

For large n, we shall use asymptotic formula for y, as given in (Askey and
Wainger 1968, p. 33) namely

{ P@T+ 1)/ T+ | sin 072272 (cos /)82 pyeo® (cos 6)

_ [1_ (%j)_(_f‘}’_%)_] cos [(n+ %@—11)9— —; (“+%)]

«*—3 p—1 . atB+1
_ [m cot /2 ——~2—(-2—n—_—5 tan 9/2] X sin [(n+ —2——) 6

T

- (aH)J +0( (n sin 6)~2 )

On taking x = cos 6, «+8+41 = 2B, n 2c+1) = —4¢ we have for large in
1

(225 (=] 3 (1)

4

[cos (nb+ B + c)+O(1/x sinb) ] (7
Let v =max (0,2 8) 30,0 < ¢ < 2/(342).

The differential recurrence relations for the Jacobi set mgy be written in the
form

(—x%)y, =n [(‘1—5) @n+a+p)” — x] yn +2 (n+e)(n +B)2n+x+B)Yna
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(I—=x%) ypy = (n+1) [(a—-@) (n+2+a+p)t —x ]y,.“ +2(n+1+2)

(n+148) 2n+2+a+8) y,
This makes D, expressed by the relation

(l=x) Dam (1=5) Giara—ri ¥ =l =x+(2—F) Qneta-t B Cnt ot £+2)7]

Yrynsi+2 (n4a) (n+8) Cn+a+L4+2)"1 (2—yns1¥n-1)
+2 Qn+a+B+1) 2nt+o+p)? 2n+atp+2)" y5—4 (n4a) (n4f)
@2n+a+8)1 Cn+at+B+2)? ¥y Yaga
and using the asymptotic relation (7) for large n, we obtain
estimate Dn (x)~2 **B+1 7-1 (1 —x)~=-1/2 (1 4-x)~B~}
{1 —x*4+0(1/n sind)}/(1 —x?) .. (8)
valid in the range —14n-¢ << x < 1 —p~¢. Also in this range
[Vnax yal =2%+B+1(p)=2 (1—x)=2-172 (14+x) ~B=1" | cos (x+#) cos x+O(1/n sinf|
<(A/n) (1—x)~2-11 (14-x)-B-12 -9
for an absolute constant 4, where we have put x for nf+ B6+c for convenience.
Similarly
Yt < (Afn) (1~x)12 (1 4x)=8-172, ---(10)
Writing p = (2"‘*8“/#”)%( 1_3{)*«/;“1/4 ( 14x )-B/i—-u

we have from the asymptotic relation (7) with x=n8+ B8--c the estimate
(=) y'n yns1 = n [(2—B) Cn+a+PB)"" —x] Vu Pus1
+2 (n+0) (n+£) 2n+a+p)? J’°n+1

~ (E-EE —nx | e {cos x+0(n sm9 )}{ cos (x+6)+ O(n smH)}

Hcos (x—0)+ O( e sm())}

1
~ on {cos (x+8)+0( ﬁ.mg )}{cos (x—6)—cosé cosx+O ( n sifiﬂr)}

+ np* {cos (x+8) +0 (-

mG

~ o°n {cos (x+8)+ O(l/sinﬂ)}{sin x sinb+ 0 (1/n siné?)} .
Since sin x = (1~—2x?)1/?, this makes
W apnss) < A (1—=2)> (1+x)B (1—x2) 1. w(11)

Now we shall estimate the expression (1) for lx+1| >n~¢. We find from (4) (8) and
(11) that

* — 240 ey Y'n Dn™?
{Dalx)} Rofx) = n(n+14a+8) — ( nz-(kl sz)+ B) Yni1 ¥ (x)

+0(m/ - 2)+0( n/(1 vxf)*“—‘\+0( 1(1—x)* ).
(12)

2(1 x)

Similarly from (6), (9) and (10)



REAL ROOTS OF RANDOM HARMONIC EQUATIONS 415

{ D,(x) }_ Su(x) = fa— B#(oc+(3+46)6]£a —iﬂ+(a+ﬁ+2)x]
24-B42 —nln+1+a: P) 1 Vo
’ - T 6w Dy CHlEe) (lee)

1 Yn Vuan

— s s [{enr2rarn et }] 2o

[x~(3—.'— @Cn+2+2+P) x ]
= _6(1 ){H—O(

i olezebolaere]
Hence D ;'(9) { RO+5:00} = 5=

3(1———) ((1 2)3/2)4‘0((1_'_‘_1;2)3). ..(13)

Further, in the above range for x, we have from (8) and (5)

' ‘II’“ D“tx) Qz(x) — [“_‘3 (o - B+2) x . n.Vn}’nﬂ{ 1+0 (%)}:l

Elr-

2 (1—x% 2 Da (x)
2
1
- [ (1 )+0(1)+0{ . (l—xz)%}J
= 0 (11—x2) + 0 (It (1=x2%) + 0 (1/» (1—x¥)12). (14)

From (13) and (14) we obtain for x in the above range,

Dt (%) {RM(x)+ Su(x)}—2% D2 (x) Q (%)
1

=5 1] 140 e ) +0 e ol )}

Let M = n2+Y, Thenfor 149 < x < 11, we find

1 - 1 _ . N1z
09 =] D7 W (R (4509} — D) QIO |

1 1 n
—_ - - - —(3+27)/(4+27) |,
v T3 o [Proeresmyen |
AR
Thus EN, (=149, 1=0) = [ Jx g (140 (rosmvwsn) iy
—14m
1 1/(4+27)
\/3 n+ 0 (n1/a+27))

where y=max (0, «, 8)>0.

We shall show that in the ranges 1 —y < x<1 and—1 x— 1+ the number
of zeros of = crardi(x) is, with probability at least 1—2/n, equal with Am?’.
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To this end we put f(x)=f (<, x)=Z ciard(x),
where ¢ denotes the random vector (co, ¢, -.., cs). Now f (G, 1)= Scrarde €8]
is a random variable with distribution functlon

X

ek | (-1

where A* = ¢} af ¢5(1) +.. +a2 ¢2(1) > Min {a? ¢2 (1), .., a* $n (1)}
e—n€3 -
sothat P { | f(1) | <exp (—2ne) ) =(73\2 \% j exp \— Tu,rz) du
0
172

2
< (TA* eint L gt
where = If hu=5%an [ ci |, then | £ (142e) | < ho {San | $u(1+2ee) | }

Now we can show as in [Erdelyi ef al. 1953, p. 722] that Py (ha<<n) > 1—3¢-n2/2

Max )
Let M= (i o, ak¢k(l*2ee°)! so that

Py { | f(1+2e€'®) | <n*M.} 3 1—-3en2,
By the Schafli representation of Jacobi polynomials (Erdelyi et al. 1953, p. 172)
—_ — 1
Pt =55 g0 (550 ) (L) (1) due—gen

for a simple closed contour (C*) around { in the positive sense, the contour being so
taken that it has the points —1 or 1 neither in the interior nor on the boundary.
After some simplification we find

2x

P® (4 = Tln— j (C+ivV 1= cos )k k l—i,\/_lii e ‘)u

-
1—7 B
( 1+l ~/ e‘ 4 ) 95
so that, remembering that

Y = g =€ we have

<(1+268 1+%)“ (142¢)8

0

Pi'=,B) (142¢ ¢i¢)
and shus
M, < (1+2€)n\ l+%)“( L4 2e )B < exp {2n(3+2”/“+27’].n‘
where 4 is a constant depending on « alone. Thus with probability at least
1—3 exp (—n*2) —exp(—ne) > 1 — —ln-

lf (1+29¢'%)
f)

< n**4exp (n(uz'r)/(uz'y) +rm)'
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By an application of Jensen’s theorem, we find that (cf. Titchmarsh 1939).
27

= ! f, 1+ 2mei?) _ ( 3427 [(4+27)
v(\c,2ﬁ)<(2'n— log2) Jlog ' [P —‘dG—O n3* log n)
0

with probability at least 1 —1/n. Combining with the results in §2 we find that

EN, = ‘1/’_3+0 (n‘“*“”’)/‘“z’” log n\)

as n—oo, We state the above result in our theorem:

Theorem ~— If Y;(x) denote the normalised Jacobi polynomials over the interval

(—1, 1) of degree & in x, then the number of real zeros of = cx ¢« (x) has the expect-
k=0

ed density fa (x) at x where fn (x) =

n 1 —1Ha+2Y
mv/3  (1—x¥)s (H—(J(n ))

for any x in the range —14n-1/2+Y < x < 1—n ~13+Y, (n—>o0).

n

The average number of real roots of ?f’k Uk (x) =0 which lie in—1  » < lis

:}’3-——!-0 (n"'*z”‘*” log n\, when n—>oo. Here v= max (0, «, g), 2> 0.

§3. The Hermite polynomials Hi(x) form an orthogonal set over the entire
x-axis (—oo<x<oo) with respect the weight function exp(—x?®). The Hxk (x) are
expressible as Hi(x)= exp (x?) D* exp (—x?) (cf. Erdelyi et al. 1955, p. 193). Taking
a%n= (7' 2 )1, we get the normalised Hermite polynomials ¢(x) = ar Hiex =ardi(x)
in the notations of the section 1. To estimate the various expressions D, (x) etc. we
shall use the differential-recurrence relations for the set, namely

Huer (%) — 2% Hy (x)+ 2n Hay (x) = O ~(13)
Hyyy =2x Hypyy —2n+1) Hyyy ...(16)
H¢ = 2x H;—2n H, ...(16A)
and on differentiation we further have
H,y = 2x H,py — 2n H’l+1 ..(17)
H, = 2x H, — 2(a—1) H, . (17a)
and Dp=H,yy Ho—Hy Hos - .(18)
From these we easily obtain
Hop Hy — Hy Hopy= 20D 2H,Hus (19

H,.+1 Hn — H,, Hoa= 2xDn —2H, anl .“(20)
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H N H.—H, H"+1=2-X(Hn+l Hn-H, Hn+1)—2"(Hn+1 HH_Han-H)

+

-—2H;Hﬂ+1=(4x2_2n) DI]_-4¢YH"HH+1~2H;H”+1 . (21)

n
To obtain estimates for f, (x), the expected density for the zeros I cx ¢« (x) at
k=0

xwhen r is large, we divide the x-axis into a number of parts. This is because
there is no single asymptotic estimate of H, (x) etc. for all x and complexity arises
for values of x comparable with a power of #.
(i) “Near the origin” for x == O(n'/°~ <), we have [Sansona 1959, p. 327]
In €Xp (—x°/2) H, (x) = €OS(N!"*x—nn[2) + O (x® N-1/%)

with N=2n--1 and /,~ F(—'2—1-+ 1) / I'(+ nl). Thus 4, and H,., cannot vanish simultane-
ously. Now —2 H; Hu.,/Dn(x)=2, for such x for which H.(x) is zero. If H.x#0, then
the ratio equals 4 where . 4;/<C 2, by the above asymptotic relations. Further the same
relations ensure (—2H, Hu1/Du)~ ’!{ . Thus, we have from (19), (20) and (21) (retain-
ing the notations Q., R. and S, when ¢ is replaced by H, in (1)), the estimates Rn,~
nDn, Sa~ é—-(4x3-—2n)D,. Qn~2x Dn so that

. V [Reis: Q. -z
fix)= Al — Dn T dps ™ Vear ...(22a)
(ii) “In the oscillatory region distant from zero” for

miste < | x| < p(2n)** with 0<p<1, the relations [Erdélyi et al. 1953, p. 193&200]

Hap (x)= (— ym 22 m! th/(i %) if n=2m
Homay (x) = (=1)m 22m+iml [1 2 (x2) if n=2m+1

. . 1
exp (—x%/2) L (x*)=(- 2)" (2c0s6)~* (mvsin2)!/* ( 1-{—0(~m—))

where v=v(a) = 4m-+22+2 can be used. However in this range of length O(n'/?) most
of the n zeros of H, and H,., are concentrated [Sansona 1959, p. 313-15]. Indeed

the [n/2] zeros of H.(x) can be arranged as 0¥, < Xenn~ ... < ¥ [Tﬂ ], n <y/2n+1,
where v=0,1,2, ... [ %]\m/\/znﬂ < X, < (dv+3)/ v InF]1 if nis odd,

=B 721 +1 < xv,n = @+ 1)/v2n -1 il nis even, so that 3v zeros lie in the
interval of length 15v/¢/2n+ 1 , giving a density O (4/2n’5) (per unit length) in this
region. If H.(x) =0, then the three term recurrence relation (15) ensures

HH+1 ES 0 ;Z: —2n Ha .y 50 that Dn (ZIlf{,, 1) = H'n+1 = - H Hn-n, Qn 2XDn,
Rn = (n+1) Dn, Sn = (2\ ‘“"“}‘1) Dn
If Hoa(x) = 0, Hx) = (n/x Hnﬁx) # 0, Da =2 (n+1) H?,

and the remaining equalities hold good. If Ha_;(x) = 0 = H'a(x)
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D, =2(n+1) H?, Hp1 = 2xH,
and the remaing equalities hold good atleast asymptotically.
Thusif 1x1 < 4/2n+1 —4 and one of Hn_1, H, and Ha.,, vanishes, then

[0 > 4 L e, - (222)
Now £ = > (W - wulf(S )
r<s

can be seen to be a continous function of x and since the zeros of Ha_), Ha, Huos1
are dense in the interval concerned, it follows that (22a) holds for all x in the range
under consideration. Thus the Mathematical expectation of the zeros of Z ¢, du(x)

1s atleast
in

1 2 ~
W—je__- J‘ ‘\/2’1—," d), (tn = [1-\/2”) .
“tn
M S
—_— /1 ~pu* s 6 > 1, < 1
Hence EN }n\/ = Gin™ p + p /1 —p9), ( © )

where u, § can be near unity showing that the sum X ¢« {i(x) on an average,
oscillate, atleast 4/1/3 99/100 times the number of oscillations admissible to it by
its degree. )

§4. For a > —1, the Laguerre polynomials LLG (x)y k=012, ) form
an orthogonal set over (0, oo) with weight function e¢-*x*.
We write the “simple’” Laguerre polynomial L,(‘n’(x) as Li(x). In the following lines,
we present a brief discussion of the equation I cxarli(x) = O which will show that
the analysis in the case of general « does not differ substantially from the typical
simple case considered here. We begin by observing that gi = 1 for a = 0, so
that ax = 1. Now to compute fu(x) write the differential recurrence relations and
their consequences as

xLn = (x-1)L,—nL, ...(22)

XLy = (=D L, —@+1) Ly .(23)

*( Lo Ln-Li Lo ) = (x—1) Dy—Ln Lns: ..(24)

( L Ln—Li L;M) = n Dy~Lny, L, ...(25)

x( LY, La—L% Lan ) = (—n+x-342/X) Dy—Law: L, .. (26)

where from  x L', = x La + (n+1) (Lnsy—La) -(27)
we have X Dn = x (L’n-o-l L,—L's Ln+1) == —-—(rH— 1) (Ln+1—Ln)2"‘x Ln Ln+l-

. (28)

We put v = 4n+12, x = v cos* § and the oscillatary region n'’® < x < p (4n+2)
(0 < p < 1)is considered. Here the asymptotic estimate
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exp (—x/2) Lu(x) = 2 (— 1) [ (2n+2) sin 26]12 (140 (1/n)).
shows that —x D, ~ (n+1+x) L2, -2 !

~1 —

Du X

Rn n"‘2 Sﬂ
D, "~ Ta3x ° . ~ (—n+x—3)/6x

so that in the range under consideration,
1

~ — n 1
f"(x) /3 ; - ~~4_.
We integrate fu(x) on the range n'’* < x < 4np to obtain

ENa (0, ) > ;%'/’-3— (sin-ip).

If the form of the integrand is any guide, we may hope that for Laguerre polynomials
filx) ~ 1/m4/3 \/nix—1/4 throughout the oscillatory region and say that the actual
expectation of the number of real roots is asymptotically equal with n/4/3. Similarly
considerations lead one to hope that for the Hermite polynomials f,(x) ~ 1/m4/3
+/2n—x* throughout the oscillatory region. This will give the same expectation. If
this can be done, we shall say that the expectation of real roots of eqn. (1), is asymp-
totically equal with n/y/3 when » is sufficiently large in each of the three cases of the
sum of normalised classical Harmonic Polynomials.
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