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An axisymmetric indeatation problem for an elastic layer overlying an elastic
foundation by an annular rigid punch is considered. This is a three-part-mixed
boundary value problem and is solved by the method of Shibuya er al. (1974,
1975). The quantities of physical interest are expressed in closed form in terms
of the unknown coefficients a, which are determined from the infinite set of
simultaneous equations. These are solved numerically and first ten roots are
considered. The variation of total load under the punch is shown graphically,

1. INTRODUCTION

One of the simplest three-part-mixed boundary value problem in the theory of
elasticity is the contact problem for a flat annular rigid punch. Williams (1963), Cooke
(1963), Noble (1963), Collins (1963) and Jain and Kanwal (1971) have shown that
such mixed boundary value problems can be reduced to the solution of a Fredholm
integral equation. The Fredholm equation is either solved by iterative techniques or
by numerical techniques.

Shibuya es al. (1974, 1975) have proposed a noble method for solving indentation
problems for infinite elastic medium by a flat rigid annular punch and thick elastic
slab by a pair of flat annular punches. In this method, a simple fact that the normal
pressure in the contact region is continuous at all points except the inner and outer
edges of the punch is utilized to reduce the said problems to infinite set of simultane-
ous equations which is solved numerically.

The method of Shibuya er al. is extended to solve the title problem. The mixed
boundary value problem is reduced to the solution of an infinite set of simultaneous
equations. This set is solved numerically in section 5. The expressions for quantities
of physical interest like total load under the punch and normal stress are derived in
section 4. The variations of total load p* with r/r, and for various values of
m = p;3/u. and h are plotted in section 5.

The problem under discussion has application in soil mechanics, e.g., the
annular punch may be regarded as a hollow pillar or as a chimney raised on a
layered soil. Some conclusions are reported in section 5.

*This work is supported by Govt. of India, grant No. G26018/23/79-T4.
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2. FORMULATION OF THE PROBLEM

We consider an infinite isotropic layer bounded by the planes z==0 and z=—#
of a cylindrical coordinate system (r,6,z). The z-axis is directed downward and the
semi-infinite isotropic space z > 0 is an elastic foundation which is in perfect bond
with the layer (Fig. 1). The elastic properties of the layer and the foundation are
assumed to be different. The free surface of the layer is indented with a rigid flat
annular punch. In view of axial symmetry, the non-vanishing displacement com-
ponents may be expressed in terms of the Boussinesq’s stress functions F (r,z) and

G (r,2) as

Ly V= — 1

- 1
2x-h _— e w e e
b— Y=

T

F1c. 1. Geometry of the Problem,

oF | 96

200 = 5tz g (2.1)
oF oG
2 #Uz = H z _c'i—z_ - (3 —_ 4V)G (22)

where p and v denote the shear modulus and the Poisson’s ratio respectively. The
stress components may be expressed as

0% F 292G oG
Ty = ?2"1—4" ZEE —2(1 - v) "a—; -'-(2-3)
_ ?*F oG oG
o= Gy T e (T2 5 24
Region I(— h < z € 0)
The two stress functions for this region may be expressed as
1
oo
FW (r, 7) = [TAL () €75 + e (s) ) Jo (s7) ds ;
(
G (r, 2) = [ [Bi(s) e=** + By (s) €] Jo (sr) ds. |
° J ..(2.5)

For this region, the quantities 1 and v are denoted by uy and v, and the displacement
and stress components are UV, U and o) and o' respectively.
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Region II (z 2> 0)
The quantities 4 and v for this region are denoted by u., and v, respectively and
the two stress functions are

F® (@, z) = FC (s) e=#= J, (sr) ds
’ ...(2.6)

[ E—— |

GO (r,2) = T’D (s) e=5% J, (sr) ds.

The displacement and stress components are U'?,U'? and 6,,?, 6,42 respectively.

3. REDUCTION TO INFINITE SIMULTANEOUS EQUATIONS
When the free surface z=—#h is indented by a rigid flat annular punch, the
boundary conditions may be written as

U:u)(r:—h):eo’ rSr<ro (31)
0.: (r,—h)=0, Or<r, r>ro +-(3.2)
o' (r—h)=0, 0 r<oo -.(3.3)

Since the elastic layer and foundation are in perfect contact, the continuity
conditions on z=0 must be satisfied. Thus on z=0, we have

U, (r,()) = U, (,.,0)’ U, (r’o) = [, (r,O) }

022V (I‘,O) = 0¥ (",0), O'rz(” (F,O) = O';z(z, (I',O).

These continuity conditions will be satisfied if

4(1—v)A; = (m+3—4v;) C—{m(3—4v.)(1—2v1)—(1 —2v,)(3—4v1)}s" 1D

4(1—v)As=(m~—1)B3—4v1) C+{m(3 —4va)(1—2v;,)—(1—2v)(3—4v1)}s2D

4(1 —w)By = {m(3—4v;) +1} D

4(1—v))B, = 2(m—1) sC+(m—1)(3—4v:)D (3.9
where m = p,/p,.

The boundary condition (3.3) is satisfied if

Cs=—[dvi —3—m+(m—1)(1 —2s5h)e 58]~ [6(vi+vg) —4(1 4+ 2vyve) +sh{l +m

(3—4vy)} + {2(va—v,) — sh(m— 1)(3—4vz)} e~24]D. .+.(3.6)
The equations (3.5) and (3.6) express the unknown functions 4,(s), 4z(s)...... C(s) in
terms of single unknown function D(s). This unknown function is determined from
the remaining boundary conditions (3.1) and (3.2). These conditions lead to the
following triple integral equations:

(3.4

6uemon = | SN(s) Julsr) ds=0, 0Kr<ry r>ry (3.7)
0

o0
U] s = j' [1+ HQSING) Jo(sr) ds= — 25 | ri<r<ro

1—v,

..(3.8)

0

where
D(s) _ ks—p'(1 —25h)e~25k
4(1—v) keks X (2sh)

e N(s) (3.9
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H(x)=—e[p+q(14 x)*+2t e*] [X(x)]™* ...(3.10)

X(x)=14[p+qg(1+x?)] e *+r1e 2> ..(3.11)

=kifks, g=—p'[ks, t=—p'kq/ks ks

Li=0CB—4)—p(3—4vy), ke=14+m(3—4v2)

ks=m+43—4v, p'=m—1.

The present mixed boundary value problem is equivalent to:

(A) The circular stamp of radius ro is indented on the elastic layer and then the
circular portion of radius r,(<r.) is removed.

(B) The clastic layer is pressed by the infinite rigid plate with a circular hole of the
radius r;, and then the infinite portion beyond the ring of radius ro(>r,) is
released from pressing.

In the case (A), the singularity of (oz:'")zc—; at r=rq takes the form (rf—r2)-1/2
before and after removing the circular portion. Similarly, in the case (B), the
singularity of (oz:").__, at r=r, takes the form (r*—r{)~'/2. Therefore, the singula-
rity in cz: for the problem under consideration will have the form (r —r2)=1/2 at r=r¢
and (r®—r§)7?/* at r=r,. Thus in the region of annular stamp, 6..1).__, is assumed
to have following form

paeH = —eof(r)

Fren A=) — D) -.(3.12)

where f(r) is an unknown function which is continuous in r;<r<(r, and non-zero at
r=ro and r=r;. Tt is convenient to define a new variable ¢ by the relation

, ri<<r<ro

2"c="z‘+ru, 2b == ro—r,

2 reb cos p=ri+b*—r-. } -(3.13)
The variable ¢=0 and = at r =r; and r, respectively. The function f(r) can now be
expressed by the following Fourier series:

(o]
= ‘ <
f(r) z a,’ cos ng, (r,<<r<<ro) . (3.14)
n=0
where a’, are the unknown coefficients to be determined later.
Using (2.13) and (3.14), eqn. (3.12) may be written as

o0
—e , Cos n¢

b L0 sing SIS ..(3.15)

n=:3

Since 6::V).__;=0 in 0<{r <r; and ro<r, the Hankel inversion of eqn. (3.15) gives us

O’:z(] ))z =—h=

k14

o0
N(s)= — %z a's I cos nd Jo (si/ri+b*—2r:b cos ¢) de.

n=0 0

The use of formula

k4

—11'-[ cos ng Jo (so/ri+ 5> —2 reb cos ¢) db=Jn(src) Ja(sb) gives us




ELASTIC LAYER OVERLYING AN ELASTIC FOUNDATION 577

o0

N(s)= — ﬂ—;o— za'n Jn(sre) Jn (sb).

n=0

Substituting eqn. (3.16) into (3.8), we get

...(3.16)

o0 o0

Za,, X [1+H@sh)} Jo (sr) Jn (sre) Ju(sh)ds = 1, ri<r<ro

fn=0 0

Recalling the formula (Erdélyi 1954a, pp. 101)

Jo(sr)y=Jo (sre) Jo(sb)+2 z I (sre)dm(sh) cos mé

m=1
where
r=(rt+b*~2rcb cos g)*/?
the above equation may be written as

0 o]

za,, j [1 + HQ2sh)] za(5) zm(s) ds=80,m (m=0, 1,2,...)

n=0 [}

w(3.17)

where
24(s) =Ju(ros)Ju(sb), and
(1-v) a
2u, " ...(3.18)
and 8, m is the Kronecker’s delta. Equation (3.17) represents a set of infinite
linear simultaneous equations for determination of the coefficients a..

a, =

4. QUANTITIES OF PHYSICAL INTEREST

We can now express o::'") (r,—A) and UV (r,—h) in terms of the coefficients
an. From (3.15) we get

[+e]
W (o By — _ . 2€0 cos ng
ot (n=h) ( w)brcz"" sing ST CRY!
n=Jy

The displacement U} in the region r<r¢and r>ro, is

U:D (r, —h)=eo za,. f]g-f— { H(25h)Jo(sr)Zn(s) ds] (4.2)
where [j= I Jo(sr) Za(s) ds. ...(4.3)

It is interesting to note that the first term in the above equation coincides with that
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of elastic half space problem, while the second term can be evaluated numerically
since H(2sh) tends to zero for large values of s.
The integral Jo may be evaluated using result (Erdélyi 1954b, pp. 53)

r r n . .
| T—f’;‘;fva)rc (f*) Fi,n+13, n+1; sin’¢)F(§,n+1, 1; sin®)), 0<r<r,

__1 td 1 2 n .
!L ( ﬂr) {gg:—jf;} (érr?‘—) F(n+3%, n+ 4, nd1; sin*¢)F(n+4, n+3,n+1:
sin?g), ro<r

where F(«, B, r, x) is the Gauss hypergeometric series and
|3 [sin*l ( r+b ):t sin~? ( r_b ” , 0<r<ry

£)-!

=

Fe re
4 [Siﬂ" ( ) £ sin (L )] , re<r.
L r r /]
Moreover ¢ in the region ri<{r<Cro is defined by

o[ it p*—r
= COS 2rcb
The total compressive load P on the punch is

ro
__ 2mmeoq,
P= _27:[ roz: (r,—h) dr = 1oy, ...(4.5)

5. NUMERICAL RESULTS
To determine the unknown coefficients g,, we must solve infinite set of simulta-
neous equations (3.17). A general element of this set may be represented by

A= Apm =111+ HQ5B)] Zu(s) Zns) ds. (5.1)

Using asymptotic formula for Bessel functions for large values of s, eqn. (5.1) may
be rewritten as

Amn = f (14 HQ2sh)] Zn(s)Zn(s) ds + A'mn ..(5.2)
0

where

o0
A'"""_[“TLT [ cos® sr; +{(—1)*+(—1)"} sin sro cos sr;
T brcs

+(—1)m*=+2 sin? sro]ds. (53)
Integrating by parts, we get

,,zlbr [ A1 cos® A ri+ri si(2An)+{(—1)"+(—1)"} {A7? sin Ars cosAr;
[

+7e ci(2Are)—bei(2AB)+(— 1)z {A=1 sin?A ro—ro Si(2"’°)}] (5.4)

A’mn-
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where
X X
. sin ¢ . cos ¢
si(x) =j Lt i () = {_T dr.
© ©

The first integral of (5.2) is evaluated numerically using 16 point Gauss-Legendre
formula. The upper limit A is fixed equal to 100. The second term of (5.2) can be
evaluated numerically using eqn. (5.4). Thus, the coefficient matrix 4 (m,n) is known.

The outer radius ro of the annular punch is fixed equal to 10 and all the
distances are now measured in terms of rp, the unit of length. The inner radius r, is
made to vary from 0.1 to 0.9 in step of 0.2. The thickness / of the elastic layer is
made to vary from 0.25to 5.0 The ratio m = p;/p, 1s made to vary from 0to 2.0
while v; and v, are fixed equal to 0.33 and 0.25 respectively. A set of 15 equations
in 15 unknowns is solved and it has been observed that coefficients a» decrease
rapidly for n 3> 10. Thus, only first ten roots are taken into consideration for the
infinitc set of simultaneous equations.

The variation of total load p* = —%:—Q)P with r;/re and (for /1 = 1.0) is plotted
in Fig. 2. It is seen that the total load p* does not change appreciably when the ratio
rilre is smaller than 0.6, while it changes rapidly for r,/ro between 0.6 and 0.9. Itis
further observed that the value of total load p* below punch decrease rapidly for
a slight deviation of m from its ideal value m = 0 (for rigid foundation). Thus, it
is important to take into consideration the elastic nature of even a very stiff founda-
tion, particularly when elastic layer is not very thick. When r; — 0, the value of
total load p* coincides with the value of p* for the corresponding problem of solid

cylindrical punch, solved by Dhaliwal (1970).

|

i h=1
I
} h=s

2+ i Gf'
| L

o L L . L ol s 1 ] ;

o 0.2 04 Qo6 08 {0 [+] 0.2 04 06 08 10
Yl’/Yo — 7{/\’0 —
Fi1G 2. Variation of £* with r;/rg and m. FiG. 3. Variation of P* with rifrg and .

The variation of tota) p* with r;/ro and & (for m = 0.5) is shown in Fig. 3. It is
again observed that the value of p* does not change appreciably when the ratio ri/re
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is smaller than 0.6, while it changes rapidly for r;/ry between 0.6 and 0.9. Again, when
r;—0, the value of p* coincides with the value of p* for the corresponding problem
of cylindrical punch, solved by Dhaliwal (1970).
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