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The object of this paper is to obtain relations between two absolute generalised
Norlund methods ( N,p,7) and (N.g,9). Our theorems obtained here generalize
many known re,ults. While discussing these inclusion relations we find that
the results of [kuko Kayashima (1973) and G. Das (1968a) bscome particular
cases.

1. INTRODUCTION

On inclusion relations between two absolute summability methods, the follow-
ing results are known.

For two given summability methods 4 and B throughout weuse | 4| C | B |
to mean that any sequence absolutely summable 4 to s is also absolutely summable

Btos.
Theorem A—Suppose that g, > 0, @, — o as n — oo* In order that

| N,p | C I N,q | it is necessary and sufficient that ——ﬂ——O\ qQ"" )

This result is due to Bosanquet (1950). Initially Sunouchi (1949) had given a
weaker result and, in his review of Sunouchi’s payer, Bosanquet pointed out that
Sunouchi’s argument, in fact, establishes Theorem A,

We make the following remarks regarding the results of McFadden (1942). He,
in defining | 4 | C | B[ does not require that 4 and B limits should agreec whereas
we do. Therefore inclusions in his Theorems 2.28 and 2.29 are to be taken in the
weaker sense in which the limits need not necessarily agree. But it is easily seen that
under the conditions of his Theorem 2.28 limits do, in fact, agree (Theorem C
below); and limits would agree in his Theorem 2.29 if we impose the additional
condition that p,=0(P.) (Theorem B below).

Theorem B—1If {p,}€ M and p,=0(P»), then [ C,1 | C [ Np]|.

Theorem C—1f {p,}EM, then | N,p| C | Cl}.

(See § 2 for definitions of M and M).

Suitably combining Theorem A with Theorem B and C we deduce Theorems 1
and 2 of Kayashima (1973) (Theorems D and E below).

Interchanging p» and g, in the sufficiency part of Theorem A and then putting
p»=1 and combining it with Theorem B, we obtain:

* We observe that the additional conditions that p,>0 and p, e as oo assumed in Bosanquet
¢1950) are not needed.
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_ Theorem D—If g.>0, {g,} is non-decreasing, p.==0(P») and {ps}€E M, then
[Ngl CINp].

Next, combining Theocrem C and the sufficiency part of Theorem A (with
pa=1), we obtain:

Theorem E—Xf gn>0, {gn} is non-increasing, Q,—>o° as n—oo and {p.} € M,
then| N,p | C | Nag |-

It is to be noted that inclusions in Theorems 1 and 2 of Kayashima’s paper are

to be taken in the weaker sense in which limits need not necessarily agree whereas in
Theorems D and E limits do agree.

The purpose of this paper is to establish some inclusion relations between abso-
lute generalised Nérlund methods. While discussing these inclusion relations we find
that the results of Kayashima (1973), Das (1968a), etc. become particular cases of
some of the results of this paper.

2. DEFINITIONS AND NOTATIONS

Let p={p.} and «={x,} be two sequences of constants, real or complex, such
that (p » «),50 for all n, where

n
(P * ‘l)n=z])n—v Zy.

v=0

o0
Let z a, be a series with {sa} as the sequence of partial sums.

Then 2 an is said-to be summable by the generalised N 6rlund method (N,p,x) to

n=g

the sum s (Borwein 1958, Das 1968a) if 15"* —s as n—>co, where

t:vt _—__(p .la)nzpn“v Ty Sv.

v=0

It is said to be absolutely summable (N,p,«) or summable | N,pa | if {t7*}isa se-

quence of bounded variation; that is, if
o0

Z { 0 — { < oo, (tB7=0).
n=0
The method (N,p,%) reduces to the Norlund method (N,p) where aq=1 for all n
(Hardy 1949, p. 64), and to the Riesz method (N,x) when pa=1 for all » (Hardy
1949, p. 57).
For a sequence {p.}, we write
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plz)= iw"

=0

whenever the series on the right converges. We define the sequences of constants {cn}
and {k.} by means of the following formal identities.

1

'n " o= —_—, _y = 0;
2” 16 M ()
n=0
N (2)

fnzn =22, o,
Z ) - (2)
n=={

if {pn} satisfies p,>0, P2t Loz < 1 for n=0,1,2, .,
Pn Pri

we shall write {p,}€ M; and if it satisfies

n Pniy

pn>o,£;i> Pri? 51 for n=0,1,2,...,

then we shall write {p,.}EAZf. If {p,} and {gn} satisfy
Pn>0, ga>0, /;‘;‘ < % for n=0,1,2,...,

then we shall write {p,} € M (gn).
Throughout this paper, we write for a sequence {p.} and an integer h,
0pn = pn—pn-1 (p-1=0); 3, = Pn;

Stpn = 8(37py) ; p'n"’=z P P = pas

n
Parti= S
v=0

V=0

3. Tue LemMaAs
We shall require the following lemmas for the proof of our theorems.

Lemma 1—1In order that the sequence-to-sequence transformation O"n=§ "dn,p S

(where throughout d., is taken as meaning O when p>>n) should be such that,
whenever {s»} converges absolutely to some limit, {s,} converges absolutely to the
same limit, it is sufficient that

G) D=z(dn,9—-dn-1,p)>0 for j=0,1,2,..n;

P=j
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n
(ii) z | dnye | <K< oo for all n, where K is a positive constant.
£-0

n

(iii) Z dn,s—>1 as n—oo; and
=0

(iv) dn, s—>0 as n—co for fixed ¢.

This is obtained by combining results of Kayashima (1973, Lemma 1) and
Hardy (1949, Theorem 2).

Lemma 2 (Das 1968b, Lemma 1)—Let /s be a non-negative integer such that
{8%pn} € M. Then

i >0, MLO for n=1,2,...,;
0
(ii) ¢*+" >0 ; and

o0
(iii) z ctzn is absolutely convergent for |z | <1.
n=y

Lemma 3—Let h be a non-negative integer. For the sequence {k»} to be non-
negative and non-increasing it is sufficient that (i) {35pn}& M,

SN N 8" pp1 )
(ii) {3%p.}E M(3hq,) and (iti) 03 gny, < ~Shp S g,

Remark: Das (1968¢, p.168) has remarked that {P»}€ M and {ga} € M (P») are
sufficient for the condition ‘“{k,} non-increasing” of his Theorem 4. But the other
condition {p,} € M" of his Theorem 4 and the condition {P,} € M cannot be satis-
fied simultaneously. Hence his remark is of no avail in regard to his Theorem 4.
However, the conditions of our Lemma 3 are compatible with the hypotheses of his
Theorem 4.

PrROOF oF LEMMA 3: Using (1), we obtain
o0 ) o0
[ D] = 3 it )
n=Q na=(
n -1 for n=0
which gives z 4pn_vey? = % (8
v=0 0 for n>0.
i (=] oo 1
Now by (3), z knz" = [zqnz" ][zﬁuz"]
n=0 n=0 nw=q)

{equation continued on pgy 590)
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- [i(swn ][“2 Gipar |

n=0 n=0

[ o] S, )

n=0

and thus ky = 2(5"% wed,

Using Lemma 2 and (ii), we obtain for n=1,2,...,

o &h C]n 1 ) | __ _ 84qo A
e I R P
31 e

> [3%gs] [c{f"— 8———€p L o] — = *g;’,%:“ e | ]

§ign N
= > @pee =0 by (@)
n

v=0

And, for n=0, ko=(dgo) c{>O0.
Thus £, >0 for all n. Next,

St [Sor]S o

n=0 n=0 n=9

and so kn—kny= 2 @t 1gn_y) ¢

v=0

By similar reasoning as above, and using Lemma 2 and (iii), we obtain, for
n>0,

oht+ g “
k —kn- 1 < Sh-H z (827;._1.1) cih):: 0

y=u

by (4). This shows that {k,} is non-increasing and the lemma is thus proved.

4. MaIN RESULTS
Theorem 1—1f (i) pa >0, 2n2>0, ks3>0, (ii) {ka} is non-increasing (iii) either {ga}
or {a,} is non-decreasing, and

kn=0((g* «)n), ..(5)
then | Np,a | C | Ngya |
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o 1 <
Proor: Writing 2% = m zp,,w Uy Sy

vy=0
we have, by a familiar inversion formuia,

n

AnSn = E Cn_v(p‘a)v If’“‘

V=0

Since, by definition, ka=(g*c)s, we have,

n n v
1 1
17 = gn_v%,Sy = — Gn--v CV>P(p*“)P thow
n ( 14 . [
(g*2)n Zuo (g rx)nzv=0 z

Pt

AN S .
= G D e (= S o

£=0 P=0

where dy,p— %2&-@ <n).

Since, by (2), qn=§ kn—wpv, 80 by (), gn220. Thus dn,s>0. Further, if s,=1 for
V=0

all n, then ¢2* <1, ¢2*=1 for all n. Hence

z fdn,p I = z dnsf‘:l-

P=0 P=0

Next, for fixed ¢, (5) implies that

kn-s=0((g*x)n—¢).
Also, under (i) and (iii), it can be easily shown that {(g # )} is non-decreasing. There-
fore (¢ # a)n_p<<(g * ®)» and hence

kne=0((g * %)n).
Thus, for fixed v,

drp—0 as p—>oo,

Therefore, by Lemma 1, it is enough to show that

D——*z(d,.,,—d,,_l,,)}O for j=0,1,2, . .

P=j

o H . kn— N
From (ii) and the fact that {(g = ).} is non-decreasing, it follows that{ »(q*m)'n} is a
monotonic non-increasing sequence of n(n>¢) and thus
d"—hf_dn,p>0 for n=p+1, P+2,...

Hence, for 0<j<n—1,
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i—-1

i1 j-1
D=1- zdn,e“l+ z n-1,p = z(dnfl’f“_ d"’f) =0.
P=u

=3 P=0
And, for j=n, D=dn,>0
since d».;,»=0. This completes the proof of the theorem.

Corollary 1-1f 24 20, ¢, 2 0, {ga} is non-decreasing and {8¢,} is non-increas-
ing, then | N, 2| C | Ng,2 | .
This follows from Theorem 1 on putting p, = 1 for all »n. For, in this case,
co=1l,c1= —1l,¢cs = Oforn > 1,
and so kn = (g » On = gn — gu-1 = 3gn.
Thus, by hypotheses, {k.} is non-negative and non-increasing. Next, (5) reduces to

5gqn = o((g* @)n). ...(6)
Since {3g«} is non-increasing, we have

(g * Dp=0q » 20N> 3gn @+ o« P4... +all)).
Also, a» > 0, we have ") > «, and therefore

(g*®) n> 3qnao (n+1).
Hence (6) holds.

From Theorem 1, we deduce the following result due to Das (1968a, Theorems
4 and 5) which also includes Theorem C.

Corollary 2—Let {p,}€ M, 2,320. If either p V'—oo or a'))—>oc0 as p—>oo, then
| Ny | C I Nyx | .

This follows from Theorem 1 on putting g» = 1 for all n. For, in this case,
ka = ¢, so by the case h = 0 of Lemma 2, {k,} is positive and non-increasing.
Also (5) reduces to

)= o (@) D

Since {p.} E M, c'V—) (A 30) as n—oo (see Das 1968a, Lemma 2). Therefore, if

p'l—oo (in which case A = 0) or x1)>o0 as p—>co, (7) clearly holds.

Remarks : In the case in which we take (iii) as “{o,} is non-decreasing” (5) is
implied by other hypotheses. For

(g% D30 g") = ao(pMi)n 2 wokn (PR+p s + oo + o) > wopoka (n+1)

since p, >0 implies that p'}’>p; and (5) follows.

Under the assumption ‘“{g,} is non-decreasing™ in (iii), a sufficient condition for
(5) is that g» = o ((g* <)n).
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For, since {k»} is non-increasing and {g.} is non-decreasing, we must have k» = 0(gn),
and (5) follows.

The assumption (5) is ‘reasonable’ since it is ‘necessary’ for the regularity of
(N,g9,%).

We use Theorem 1 to deduce the following more general result.

Theorem 2—If (i) pn 20, 2, > 0, k, > 0, (ii) h is a non-negative integer such
that 8k k>0, {8hkn} is non-increasing, (iii) either {g.} or {xa} is non-decreasing and
(iv) (5) holds, then | N,p,z | C | Ny, | .

Proor : Consider first the case in which {«,} is non-decreasing. Note that in
this case, by the remark given aftcr Corollary 2, we do not need to assume (5. Ifr

is a non-negative integer then, applying Theorem 1 with pn replaced by pi” and

with k, replaced by 1 (so that g. is replaced by pl'™"), we get

[ Nop©Oa | C | Nopl |, ..(8)
Again applying Theorem 1 with p, replaced by pm and with &, replaced by d%k,,
we get | N,p®o | C | Nugyz | - «..(9)
From (8; and (9), we deduce the required result.

Now consider the case in which {g.! is non-decreasing. We may suppose that
h > 1 (since the case i = 0 is given by Theorem 1). We first show that, when / 2> 1,
the hypotheses imply that

either p) — oo or &) —> ocasn — «. ---(10)

For suppose not. Then p‘1, x() are both bounded. Now, since, # > 1, (ii) implies
that {4} is non-decreasing. Hence

G kn(po+pi+ ...t pn) = Olkn).
Similarly, since {g,} is non-decreasing, (7,2)a <gn(%0+ %+ ... +2n) = O (gn).
Thus (gea)s = O(k»), Which contradicts (5).

We again establish the conclusion by proving that (8) and (9) hold. But we can

no longer take it for granted that, when we make the replacements in Theorem 1
needed to obtain (8) and (9), we will still have (5) holding. Thus, in order to prove
(8), we have to verify that

1 = o ((prya)n). ...(11)

If r > 1 orif r = 0 and the first alternative of (10) holds, then p{-» co as n—>oo,
and thus
(P ex)n > agpUtD —> coasp > oc.

It remains to consider the case in which r=0 and the second alternative of (10).

Here we have, since {p'}’} is non-decreasing
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(PMVu@)n 2 pP (%0 + %, + ... + @) > o0 as n —> oo,
Thus, in either case, we deduce (11).
Finally, in order to prove (9), we have to verify that
(3%kn) = o((gea)n).
But, since {(g+«)s} is non-decreasing, this follows easily from (5). This complztes the
proof of the theorem.
We remark that Theorem 2 includes, as a special case, the well known result
that if p>A2>0, then
FCAl C | Cp .
Theorem 3—un 2 0, (5) holds, and A is a non-negative integer such that

Sh
() {e"pa}€ M, (ii) {3tpa}E M (Shgn), (iil) 0  $Hgny < %}:“ 8h~1g, then

[N, po| C |Nga |.
Proor : When / = 0, trivially p, > 0; and (ii) implies that g, >> 0 and (iif)
implies that 3¢, 2> 0. Next suppose that # > 0. We note that

n
m-1
5 p = zspv ‘ ..(12)

By (i), we must have 8 p, > 0; and therefore, from (12) we successively deduce that
3 pn >0 with m = h—1, h—2,...,1,0. Hence p, > 0. Also (ii) includes the assertion
that 8% g, > 0; therefore (as proved above for p») g» >» 0 and 8g. > 0.

Thus when #4 is a non-negative integer, 6g, >> 0 and therefore {g»} is non-
decreasing.

Finally, by Lemma 3, {k.} is non-negative and non-increasing.

Thus the conditions of Theorem 1 are satisfied and the required inclusion
follows.

Theorem 4—1If (i) p. 2> 0, (ii) {g»} is non-negative and non-increasing, (iii) {«n} is
non-negative and non-decreasing, then | N, p, = | C [ N, p, % g, « | .

Proor : We show that the conditions of Theorem 1 with g, replaced by (p * ¢)a
are satisfied. Replace g» by (p # g)xin (2), we find that kn = ga, s0, by (ii), {kn} is
non-negative and non-increasing.

Also (5) reduces to

gn = 0 ((p* q* o)), -(13)
Since, by (i) and (iii), (p * a). is non-negative and non-decreasing, therefore
(prgxa)y, 2 (p*a)p(go+ q + ... +4n)
2 qn(p* a)(ntl)
by (ii), and (13) follows.

Theorem 5—If (i) an 2> 0, B, > 0, (ii) { ps} € M, (iii) BY — o0 as n - oo
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a
(v) 2 _
0 fn

%n
Proor : We assert that the hypotheses of the theorem imply that «{" — oo as

h BLI)
( ),then]N,p,uleJ—V,ﬁl-

n — oo. Suppose the assertion is false; then, since {o!P} is non-decreasing, it must
converge. Write, for sufficiently large »,

By
—— =14 up; =1+ v
(1) (1)
%p-1 n-1
Thus u» > 0, v« > 0. Now
o o
|| B |
=13
OO
converge; hence z Un (14)
n=\
convereges. Now, by (iv), there is a constant / such that
Bn An
< H
g;‘) = af ?
. Yn Un
ich i 07 —— < Hy-:
which is equivalent to i < H1+un (15)

The convergence of (14) implies that u,—0 as n—oo; hence, by (15) va —0 as n — oo.
Thus as n —> oo
L
14v,
Hence (15) shows that vn = O (u») and thus the convergence of (11) implies that

n
~ Vg —— ~ Un.
A UT

o0
v» also convergas. Hence

o "

Ha;l_)l Ii,(l + Vn).

But this contradicts the assumption (iii) and hence the assertion is true.
The result now foltows by combining Theorem A (with p, replaced by «. and ¢

by 8,) and Corollary 2.
Writing g, for 8, and taking x, = 1 for all » in Theorem 5, we obtain Theorem

E. For, in this case, (iv) is implied by the assumption that {g,} is non-increasing.
Putting B, = 1 for all n in Theorem 5 and combining it with Theorem B (with p,

replaced by ¢,), we obtain
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Theorem 6—If (i) «n > 0, (ii) {pa} € M; (i) «” = O (h+1Daw), (iv) {gs} € M

and (v) g =0 ( g"), then| N,p, x| C | N,q].

By putting p» = 1 for all n and then writing ¢. instead of =, and p, instead of
gn in Theorem 6, we get Theorem D.
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