ON A FIXED POINT THEOREM ON UNIFORMLY CONVEX BANACH SPACES

P. VEERAMANI AND D. V. PAI

Department of Mathematics, Indian Institute of Technology, Powai, Bombay 400076

(Received 1 August 1981)

In this paper a fixed point theorem is proved by using normal structure. This generalizes results of Kannan, Cirić and Rhoades.

1. Introduction

A result of continuing interest in fixed point theory is the one due to Kirk (1965). This states that a nonexpensive self-mapping of a bounded closed and convex subset possessing normal structure in a reflexive Banach space has a fixed point. Recently Kannan (1971) and Ciric (1975) have obtained results in basically the same spirit by suitably modifying the non-expensive condition on the mapping and the condition of normal structure on the underlying set. In this paper by using normal structure we obtain a fixed point theorem which generalizes results of Kannan (1971), Ciric (1975) and Rhoades (1977).

2. FIXED POINT THEOREMS IN BANACH SPACES

Let S be a bounded subset of a Banach space X. A point $x_0 \in S$ is said to be a 'non-diametral' point of S if $\sup\{\|x-x_0\|: x\in S\}<\delta(S)$ (where $\delta(S)=\sup\{\|x-y\|: x,y\in S\}$, the diameter of S).

A bounded closed convex subset K of a Banach space X is said to have 'normal structure' if for each closed convex subset H of K which contains more than one point there exists an $x \in H$ which is a non-diametral point of H.

Evidently, a bounded closed convex subset K of a Banach space X has 'normal structure' if and only if for each closed convex subset H of K which contains more than one point there exists an $x \in H$ and $\alpha(H)$, $0 < \alpha(H) < 1$, such that $\sup\{ \| x - y \| : y \in H\} = r_X(H) \le \alpha(H) \delta(H)$.

Theorem 2.1—Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T_1, T_2 be mappings of K into itself satisfying:

(i) for each closed convex subset F of K invariant under T_1 and T_2 there exists some $\alpha_1(F), 0 \le \alpha_1(F) < 1$, such that

$$|| T_{1}x - T_{2}y || \leq \max\{\frac{1}{2}(||x - T_{1}x|| + ||y - T_{2}y||), \\ \frac{1}{2}(||x - T_{2}y|| + ||y - T_{1}x||), \\ \frac{1}{3}(||x - y|| + ||x - T_{1}x|| + ||y - T_{2}y||), \\ r_{X}(F), \alpha_{1}\delta(F)\}$$

for $x, y \in F$;

- (ii) $T_1C \subset C$ if and only if $T_2C \subset C$ for each closed convex subset C of K;
- (iii) for each closed convex subset D of K invariant under T_1 and T_2 there exists some $\alpha_2(D)$, $\frac{1}{2} \leq \alpha_2(D) < 1$, such that either

$$\sup_{z \in D} ||z - T_1 z|| \leq \max\{r(D), \alpha_2 \delta(D)\}$$
$$(r(D) = \inf \{r_X(D) ; x \in D\}$$

or

$$\sup_{z \in D} \|x - T_2 z\| \leqslant \max\{r(D), \alpha_2 \delta(D)\}$$

$$(r(D) = \inf \{r_x(D) : x \in D\}).$$

Then there exists a common fixed point of T_1 and T_2 .

PROOF: We imitate in parts the proof of Kirk's theorem. Let \mathcal{F} denote the family of all nonempty closed convex subsets of K, each of which is mapped into itself by T_1 and T_2 . Ordering \mathcal{F} by set inclusion, by weak compactness of K and Zorn's lemma, we obtain a minimal element F of K. By the definition of normal structure, there exists $x_0 \in F$ such that

$$\sup\{ \|x_0 - y\| : y \in F\} = r_{x_0}(F) \leqslant \alpha_3 \delta(F)$$

for some α_3 , $0 < \alpha_3 < 1$.

Without loss of generality assume that

$$\sup_{z \in F} \|z - T_2 z\| \leqslant \max\{r(F), \alpha_2 \delta(F)\}$$

for some $\alpha_2, \frac{1}{2} \leq \alpha_2 < 1$. If

$$|| T_{1}x - T_{2}y || \leq \max\{\frac{1}{2}(|| x - T_{1}x || + || y - T_{2}y ||), \\ \frac{1}{2}(|| x - T_{2}y || + || y - T_{1}x ||), \\ \frac{1}{3}(|| x - y || + || x - T_{1}x || + || y - T_{2}y ||), \\ r_{x}(F) \}$$

for all $x,y \in F$,

let
$$\beta = \max\{\alpha_2, \alpha_3\}$$

and
$$F_{\delta} = \{x \in F : r_x(F) \leqslant \beta \delta(F)\}.$$

Otherwise, by hypothesis (i) there exists $\alpha_1(F)$, $0 \le \alpha_1(F) < 1$, such that

$$||T_1x-T_2y|| \leqslant \alpha, \ \delta(F) \text{ for some } x,y \in F.$$

Let
$$\beta = \max\{\alpha_1, \alpha_2, \alpha_3\}$$

and
$$F_{\varepsilon} = \{x \in F : r_x(F) \leqslant \beta \, \delta(F)\}.$$

As $x_0 \in F_{\delta}$, F_{δ} is nonempty.

Evidently, F_{δ} is convex. Since $x \rightarrow r_x(F)$ is continuous, F_{δ} is closed.

Let $x \in F_{\delta}$. Then

$$\| T_{1}x - T_{2}y \| \leq \max \left\{ \frac{1}{2} (\| x - T_{1}x \| + \| y - T_{2}y \|), \\ \frac{1}{3} (\| x - T_{2}y \| + \| y - T_{1}r \|), \\ \frac{1}{3} (\| x - y \| + \| x - T_{1}x \| + \| y - T_{2}y \|), \\ r_{x}(F), \alpha_{1} \delta(F) \}$$

$$\leq \beta \delta(F) \text{ for } y \in F.$$

This gives that $T_1(F)$ is contained in a spherical ball \overline{U} centred at T_1x and of radius $\beta \delta(F)$, i. e., $T_2(F) \subset \overline{U}$, whence $T_2(F \cap \overline{U}) \subset F \cap \overline{U}$ and by hypothesis (ii) $T_1(F \cap \overline{U}) \subset F \cap \overline{U}$. By the minimality of F, we obtain $F \subset \overline{U}$. Hence $r_{T_1x}(F) \leq \beta \delta F$, and this implies $T_1x \in F_\delta$. Therefore, $T_1(F_\delta) \subset F_\delta$ and by hypothesis (ii) $T_2(F_\delta) \subset F_\delta$. Hence, $F_\delta \in \mathcal{F}$. But $\delta(F_\delta) \leq \beta \delta(F) < \delta(F)$, which contradicts the minimality of F. Hence, F contains a unique x_0 such that $T_1x_0 = x_0 = T_2x_0$.

Remark: If we replace (i) by

(i')
$$|| T_1 x - T_2 y || \le \max \left\{ \frac{1}{2} (|| x - T_1 x || + || y - T_2 y ||), \right.$$

 $\frac{1}{3} (|| x - T_2 y || + || y - T_1 x ||),$
 $\frac{1}{3} (|| x - y || + || x - T_1 x || + || y - T_2 y ||) \right\}$

 $(x,y \in K)$ in the above theorem, then there exists a unique point x_0 in K such that $T_1x_0 = x_0 = T_2x_0$.

The following lemma is known (Belluce and Kirk 1967, Theorem 4.1).

Lemma 2.2—If K is a bounded closed convex subset of a uniformly convex Banach space, then K has normal structure.

The following theorem generalizes results of Kannan (1971, Theorem 2), Ciric (1975, Theorem 2) and Rhoades (1977, Theorem 1).

Theorem 2.3—Let K be a nonempty closed bounded and convex subset of a uniformly convex Banach space X. Let T_1, T_2 be mappings of K into itself satisfying

(i)
$$||T_1x - T_2y|| \le \max\{\frac{1}{2}(||x - T_1x|| + ||y - T_2y||), \frac{1}{3}(||x - T_2y|| + ||y - T_1x||), \frac{1}{3}(||x - y|| + ||x - T_1x|| + ||y - T_2y||)\}$$

for $x, y \in K$;

and (ii) and (iii) of Theorem 2.1.

Then the sequence $\{x_n\}$ of iterates defined by

- (iv) $x_0 \in K$,
- (v) $y_n = (1 \beta_n)x_n + \beta_n T_1 x_n, n \ge 0$,
- (vi) $x_{n+1}=(1-\alpha_n)x_n+\alpha_nT_2y_n, n \geqslant 0;$

with $\{\alpha_n\}$, $\{\beta_n\}$ satisfying

- (i') $0 \le \alpha_n$, $\beta_n \le 1$ for all n,
- (ii') $\sum_{n} \alpha_{n}(1-\alpha_{n}) = \infty$, and
- (iii') $\lim \beta_n = \beta < 1$,

converges to the unique common fixed point of T_1 and T_2 .

PROOF: Existence of fixed point follows from Theorem 2.1. The remaining proof is similar to that of Pai and Veeramani (1981, Theorem 4.1) and hence is omitted.

REFERENCES

Belluce, L.P., and Kirk, W.A. (1967). Nonexpensive mappings and fixed-points in Banach spaces. *Illinois J. Math.*, 11 (3), 474-79.

- Bonsall, F.F. (1962). Lectures on Some Fixed Point Theorems of Functional Analysis. Tata Institute of Fundamental Research, Bombay, India.
- Ciric, Lj. B. (1975). On fixed point theorems in Banach spaces. Publ. Inst. Math., 19 (33), 43-50.
- Kannan, R. (1971). Some results on fixed points-III. Fund. Math., 70, 169-177.
- Kirk, W.A. (1965). A fixed point theorem for mappings which do not increase distances. Am. Math. Monthly, 72, 1004-1006.
- Pai, D.V., and Veeramani, P. (1981). On some fixed point theorems in Banach spaces, to appear in The International Journal of Mathematics and Mathematical Sciences.
- Rhoades, B.E. (1977). Some fixed point theorems in Banach spaces. Math. Sem. Notes, 5, 69-74.