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In this paper a fixed point theorem is proved by using normal structure. This

generalizes results of Kannan, Ciri¢ and Rhoades.

1. INTRODUCTION

A result of continuing interest in fixed point theory is the one due to Kirk
(1965). This states that a nonexpensive self-mapping of a bounded closed and
convex subset possessing normal structure in a reflexive Banach space has a fixed

point. Recently Kannan (1971) and Ciric (1975) have obtained results in basically the
same spirit by suitably modifying the non-expensive condition on the mapping and
the condition of normal structure on the underlving set. In this paper by using
normal structure we obtain a fixed point theorem which generalizes results of

Kannan (1971), Ciric (1975) and Rhoades (1977).

2. Fixep PoiNT THEOREMS IN BANACH SPACES

Let S be a bounded subset of a Banach space X. A point x, € § is said to be a
‘non-diametral’ point of § if sup{ Il x —xo || : *E€ S} <3(S) (Where 3(S)=sup{ fj x—y i :
X,y€ S}, the diameter of S).

A bounded closed convex subset K of a Banach space X is said to have ‘normal
structure’ if for each closed convex subset A of K which contains more than one
point there exists an x& A which is a non-diametral point of H.

Evidently, a bounded closed convex subset K of a Banach space X has ‘normal
structure® if and only if for each closed convex subset H of K which contains more
than one point there exists an x€ H and «(H), 0<a(H)<1, such that sup{ | x—y | :
YEH}=rx(H)<o(H)3H).

Theorem 2.1—Let K be a nonempty weakly compact convex subset of the
Banach space X. Assume K has normal structure. Let 73,7, be mappings of K into
itself satisfying:

(i) for each closed convex subset F of K invariant under 7: and T, there exists
some o3(F),0< «,(F)<1, such that

| Tyx—Toy | < max{3( | x—T1x I + 1 y—Top 1),

W(la—Ty |l +Hy=Tx )
Whx—yll + lx—Tux i+ 1y—Ty 1),
rx(F), u.3(F)}
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for x,yE F;

(i) 71CCC if and only if T2CC C for each closed convex subset C of K;

(iii) for each closed convex subset D of K invariant under 7 and 7, there exists
some as(D), 3<ax(D)< 1, such that either

sup || z—7,z || <max{r(D), v23(D)}
zeD
(r(D)=inf {rx(D); x€D)

or
sup | x— Toz || Kmax {r(D), «,3(D)}
z€D

(r(D)=inf {r«(D) : x€ D}).

Then there exists a common fixed point of T} and 7.

Proor: We imitate in parts the proof of Kirk’s theorem. Let S denote the
family of all nonempty closed convex subsets of K, each of which is mapped into
itself by 741 and 7:. Ordering S by set inclusion, by weak compactness of K and
Zorn’s lemma, we obtain a minimal element F of K. By the definition of normal
structure, there exists xo& F such that

sup{ | xo—y || : yE F}=rap( F)<og 8(F)
for some a3, 0<<az<<l.

Without loss of generality assume that

sup || z— Tez I| < max{r(F), =2 3(F)}
zEF

for some a,, }<as<]1, If

I Tix—Tey | < max{#( x—Tax i + 1 y—T.y |I),
Whx~Teyl + 1y—T1x 1),
Hitx=yl+x=TxIl +0y—=Toyl),
r F)}
for all x,yE F,
let p=max{us,xs}
and Fy={xEF: r(F) < B 5 (F)).
Otherwise, by hypothesis (i) there exists x;(F), 0{ai(F)<1, such that
N Tix—Tey | < «, 3(F) for some x,y EF.
Let 8 = max{o,,as,23}
and Fs = {(x€F: r(F) < B 3(F)}.
As xo& F5, F; isnonempty.
Evidently, F; is convex. Since x—r,(F) is continuous, Fjs is closed.
Let x€ Fs. Then
I Tix—Tey | Kmax {3(1l x—=Tix | + I y=Tey Il),
Hix—Teyll + W y=Tir i),
Hix—pyl+0x—Tixl+lly-Teplh),
r«(F), @ 3(F)}
< B3(F) for ye F
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This gives that 77(F) is contained in a spherical ball T centred at Tyx and of radius
B8 (F), ie, Ta(F)C U, whence To(F U)C F U and by hypothesis (ii)
T{FNU)CFNU. By the minimality of F, we obtain FC{. Hence rr F)<pPSF,
and this implies T,x€ Fs5. Therefore, T1(Fs)C Fs and by hypothesis (i) Tu(Fs)C Fs.
Hence, F:€ . But 3(Fs) < B3(F)<3(F), which contradicts the minimality of F.
Hence, F contains 2 unique ¥, such that Tixo=wxo=T\,x,.
Remark: If we replace (i) by
() Tyx—Toy B < max 0 x—Tyx it + | y—Tor 1)),
Wha—=Toy | + 1 y=Tax | ),
W x—y i + 0 x=Twx | + | y—Toy I )}
(x,yEK) in the above theorem, then there exists a unique point xo in K such that
T1.x0=x0="Ty%o.
The following lemma is known (Belluce and Kirk 1967, Theorem 4.1).
Lemma 2.2—If K is a bounded closed convex subset of a uniformly convex
Banach space, then K has normal structure.
The following theorem generalizes results of Kannan (1971, Theorem 2),

Ciric (1975, Theorem 2) and Rhoades (1977, Theorem 1).
Theorem 2.3—Let K be a nonempty closed bounded and convex subset of a
uniformly convex Banach space X. Let T,,7T, be mappings of X into itself satisfying
ONTx-Tey | Kmax{§( | x—=Twx | + y—Tey i),
WU x—Toy + 0 y—=Twx ),
ix—ypl+lx—=Txlh + 8y—Toy | )}
for x,y € K;
and (ii) and (iii) of Theorem 2.1.
Then the sequence {x,} of iterates defined by
@iv) x € K,
V) yn=(1—Bn)sn+BaT1xa, n 2 0,
V) Hppa=(—an)Xs+anT2)s, n 2 0;
with {«,}, {8} satisfying
(i) 0<an, B.<1 for all n,
(i) T an(l—wn)=oo, and

(iii') im fa=B< 1,
converges to the unique common fixed point of 74 and 7.

Proor: Existence of fixed point follows from Theorem 2.1. The remaining
proof is similar to that of Pai and Veeramani (1981, Theorem 4.1) and hence is

omitted.
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