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CERTAIN RESULTS ON A GENERAL SEQUENCE OF FUNCTIONS

G. N. CHANDWANI

Department of Mathematics, B. S. P. Higher Secondary School, Sector X,
Bhilai Nagar (M.P.)

(Received 25 May 1981; after revision 17 October 1981)

Following Srivastava and Singhal (1971, 1972), Chandeland Agrawal (1977)
defined a general sequence of functions and investigated some operational
relationships connecting such functions on the analogy of the results given
earlier by Srivastava and Panda (1975). The author records a few more results
which he derives here along the lines detailed by Srivastava and Panda (1975);
see also the concluding remark.

1. INTRODUCTION

Following Srivastava and Panda (1975), Chandel and Agrawal (1977) gave an
account of operational relations for a sequence of functions defined by
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where a, b, ¢, d, e, f, g, & P> 7> %, [, ¥, k are arbitrary constants independent of », and
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The purpose of this note is to present a few additional results on this sequence of
functions,

We first record here some known formulae for ready reference [Srivastava and Singhal
(1971, p.76)] :
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where u and v are functions of v differentiable any number of times and
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W (x) is a linear
w (x)

where w (x) is any function of x, X is any polynomial in x and

function of x.

The relation connecting the operators D == d/dx and S = x i is

dx
XD =3 (3=1)(5=2) ... G—n-+1) = 1_1':11 (5—j+1). .(1.6)
Srivastava and Singhal (1972) have proved the following properties of the operator
8 = x d\d{
S (®) lexp {g (x)} A (x)] = exp {g (x)}- f (+xg'). & (x). - (1.7)

For brevity, we will write
Tkl for TLOETH (v, 0,8, ¢, dp, 1) .
2. OPERATIONAL FORMULAE
Starting from the definition (1.1) and applying (1.3) we have
Q: [(ax+b)m+en (Cx+d)8+fn xYten e—pxrd) (X)}

= > (1) n—m) ! (ax-rbysrem (cx +d)prm xrem g5s'

m=2(
X TRt T Q¢ (x), 20
d d
Now Q, = x* = i where ¥ = x'"*/1 — k so that

d
"o d " — -n ,.n / i
Q, = (E) = u"u \ du
Ql = un ( i)n = u I (3—j+1) 2.2)
@ 2.

d
where 8 =u i [from 1 5].

Using (2.2) on the left-hand side of (2.1) and applying (1.7) we can prove that

n
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(equation continued on p. 1169)
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x1—~k n -
= (T——T) z (ax—i—b)(’"'")e (cx+d)(m—n)/x(m—n)g

n=0
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n—merfog

If ¢ (x) = 1, (2.3) will give us

”
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1~k\"n 8,7,
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3. GENERATING FuNCTION
Using (1.1) and exponential expansion, we have
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X Tty B vem 4,

Again using (1.4) we get the required generating function

0
n+m P(u»e(n+m), B-f{myn)s Y—gimin) k) ¢n
m titmesf g

n=0

( ax A+b>°‘-f"‘ ( cx A+d)a“fm AY-gm
ax+bh cx+d

X exp (— p X (Af — 1)) T B/ Ym0 (x 4, a, b, ¢, d, p, 7)

where m is an integer > 0
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1
= [1— (k—1) x*! (@ x+b) {c x +dY x9. 1] *k=D),

4. Bi1.INEAR GENERATING FuNcCTIONS

We append a bilinear generating function and express the result in the form of

Theorem — 1 Let R, (y) be a polynomial of degree [ Z ] in y defined by

[n/q) \ _
7y S s n
Rimn (3) = z {———KM'} y (qs). (@41
5=0
Then for every integer m > O and ¢ > 1
S gt R, ) o -(42)
n=g
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-{ ax-+b [ cx+d X8 Fom| XA, yt* axA+b) pe A“%:d) X
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< ) A+b : a8
mss ax A + o e X A - —fqs
7 - ———e Y—g4qs
sz+qs(yt)[ ax+b [CX7d A7
S=

X e ¥ (As_l) Fi:;:fq:'g, B-tats ¥ oqsok] (XA’ b’ ¢, d, s S)
= R H.S.

The resuit given above can be further generalised in the form of the following
theorem.

Theorem 2 — For a polynomial defined by (1.1)
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If Fplx,y,2,1) = z (@) g (v) Thoo? B-fais y-2as Kl (x4 b, ¢, d, p, 1) 210
j=0 ...(4.4)
Then z T’[:;;:: B~fns v gm k] (-x) a, bs C, d9 D r) 0: (y’ Z) t"
n=0
_ [ aXA+b u( (xA+d B r x' § e
—( ax+b ) Cx+d) A err (Ar—1)
ax+b \f ex4+d \ :]
,\Fq[xA,y,th(axAer) (ch—l—d) x-¢9 .(4.5)
where
[niq] ‘
GZ » z) = z (ay) (qn]. ) gi (y) z. ...(4.6)

j=0

Proof is the same as that of Theorem 1.

5. PARTICULAR CASES

Particularly fork = r = g = Oand e = f = 1, the above result reduces to
result due to Srivastava and Singhal (1972).

Remark : In view of the generating function (3.1), Theorems 1 and 2 of this
paper are derivable as obvious special cases of a general result given recently by
Srivastava (1980, p. 224, Theorem 2) where several classes of bilateral generating
functions have been presented rather systematically.
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