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A study is made of the phase velocity of Rayleigh waves on a concave
cylindrical poroelastic surface for pervious and impervious surface. It is observ-
ed that Rayleigh Waves on this surface are dispersive unlike for the case of no
curvature. The numerical results are presented graphically. The results of
classical theory are recovered as particular case.

1. INTRODUCTION

The propagation Rayleigh Waves on a concave cylindrical Poroelastic surface is
investigated by considering a circular cylindrical cavity in an infinite poroelastic medium
using the dynamic equations of Biot (1956). Unlike for the case of no curvature,
Rayleigh Waves are seen to be dispersive. The plot of phase velocity versus surface
wave number (= 1/curvature) is presented. The investigation may be useful in oil/gas
wellbore-logging. The results analogous to half space are obtained as a particular
case. By neglecting liquid effects, after some rearrangement of terms, one can

recover the stresses and wave velocity equation of classical theory due to Epstein
(1976).

2, SOLUTION OF THE PROBLEM

Let r, 0, z be cylindrical polar co-ordinates. The equations of motion of a
liquid-filled porous medium in presence of dissipation (b) are
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where ¢2 is the Laplacian, a dot over a quantity denotes partial differentiation w.r.t.

time, r and the potential functions ¢, ¥, H and G are connected with the solid

displacement u (u,, us) and liquid displacement U (U,, Us) by
tt = D¢ +r'dH,ue = r*dé¢ — DH }

A2
U =D4+r2dG Us = r'*dy — DG @
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and their relations with the relevant solid stresses o, o,e and liquid pressure (s) by

rr = 2N (D%¢ + v DAH — r-2dH) + 4v? ¢ + Qv WI
ore =N (2r-'Dd ¢-+r2 d2H—2 r~2 dp—D*H--r-* DH) ]> ..(3)
s=0Q V2 ¢--Ry? ¢. J

In the above, the notations of Biot (1956) wherever possible are followed and
D = 0/or, d = 9/0s.

Considering a circular cylindrical cavity in an infinite poroelastic medium the
bounded solutions of (1) for steadystate harmonic vibrations are seen to be

¢ =[C HP (x) +C, H® (p)] cos b exp (ipt) 1
d = — [C; L, H?! (x) 4+ CoL,H®'(»)] cos a6 exp (ipt) o
H= H® (z) Cs cosad exp (ipt) >
where
Vix=Vyy=Vsz=pr
Vi (RMy; — QMy2) — (PR — Q?)
e V! (RMr — QM)
L: = Similar expression as L, with V, replaced by Vs,
M, =pu— %b’ M = o2 + ';71’, Msz = ppr — %b . ...(5

Vi, Vs, V3 are the wave velocities of dilatational wave of first and second kind and a
shear wave respectively (Biot 1956). The angular wave number « is equal to ka; k

is wave number, q is radius of cylinder and p is frequency of the wave. H!¥ is the

Bessel function of third kind (Hankel function). The Hankel function tends to zero
as the argument becomes large, although, the individual Bessel functions do not.

The stresses and pore-pressure are subsequently obtained from equs. (3) and (4)
which are

r’ 6, = <
+{2N« (« + 1) +x2QL, (I4+-L{* p2—Q~' p2 R)

2N {x> H®, (x) — x (2u—1) HZ, (x)}

—(P—2N)x3}H2' (0)) C, +H2N {y* H. (») -y« — 1) HY, ()P
+{2Neo (a+1)+-y? QLe‘ (1+L;p~2—Q" p2R)—(p—2N)y2}H (M]Cs

+2 N [zHY), (2) — (2+1) HP (2)] Cs> cos « § et ~+(6)
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2o = 2ia f[{x H?, (x)—(x +1) H® (x)} ¢,
+ H (3) — (@ + 1) HP (1)} Ca
+ {20z HP, (z2) — 20 (¢ + 1) HE (2) — 22 H, (2) } Cs] cos « 6 et
(D
s =[Wi*(Q — RL) HP (X)C, + V3? (Q —RL:) H® (y) Cs] cos a6 o,
..(8)

From the conditions of stress-free curved surface, the dispersion relation of
wave velocity in non-dimensional form for pervious surface, after a long calculation,
in absence of dissipation is

| Ais | =0,i,j=1,2,3 ..(9)
where

Ay = 2q3 o2 a2 C? HSY, (x;)) — 22C asg¥® 2u—1) H?, {x;)

+ {2g1 2 (a-+1) -~ (g1 — 294) 22 g4 C2 a5 + q2 qu #* C*

x (@} a3 (qa 2> C*+ g5 gs) + @) —a; quta; a gs} HP(x)
Ap=2q «2CvVms H®, (z,) — 2q4 2 («-+1) H'? (z,)
An=aV gias CH®, (x)) — (z+1) H® (x,)
A= 272 C2my HY, (z;) — « C v ma HY, (2)+ (2+1) HP ()
An=a; (— ¢, + gaqao? ai C* o} + g5 a2) HP (x)),

Ayz2, Ay, Azp=Similar expressions as 4;,, 4,,, As, with a; and x; respectively replaced
by as and y,,

Az = 0. ...(10)
In the determinant (9), we have

xl=\/;:uztgc,ylzx/aamC,zlr-mC\/;l:

& - 9 93 — q% & = Mg~ d2me
1 qa 22 C% (m2 gs—qz ms)’ 2 ms s — gz ms
)

gs ag, qs a: =(Iuri:(qs-—4qsmam4)

Msms = m ms—ms,qs=¢qyqs — g3, g6 =q, ma — 2 ge ma+my ¢s

m; = pi1fp, M2 = py2fp M3 = paafp
q = P/Hb qs = Q/ng qs = R/Hl, g = N/Hl
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with
p=rpu+ 202+ pes, H, = P4 20 + R

C is dimensionless phase velocity.
The wave velocity equation for impervious surface is

i j=1,2,3.

..(11)

' Bii | = 0’
The elements of the above determinant are :
B =4y, Byy=A;s, Bia=A;a; Byy= A, B2a=A32,, Brz=Asmn,
By = a3 Ay, {Ho(;z—)x (x) — @ xx_lH;m (x1) }/H;Q) (x1),
Bs, = Similar expression as Bs, with as; and x, replaced by a4 and y, respectively,
B33 = 0.
By neglecting liquid effects in (6), (7) and (9), one can easily see, after some re-
arrangement of terms that these correspond to the stresses and wave velocity equation

of classical theory of elasticity (Epstein 1976).
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Phase velocity versus wavenumber.
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3. DISCUSSIONS

It can be seen that in the limit « — oo, the dispersion relation for Rayleigh
waves on a concave cylindrical surface, eqns. (9) and (11), reduces to the equation for
Rayleigh waves in the poroelastic haif-space for pervious and impervious surface
respectively. The phase velocity versus wave number is calculated for the material
sand-stone saturated with kerosene (Fatt 1959) for two specific cases, namely pervious
and impervious surface. These results are presented in the form of a graph. Rayleigh
waves for this surface are dispersive unlike for a straight surface. Only one mode of
propagation is observed to be existing. Further it can be seen from the Fig. 1
that phase velocity increases in the interval (0, 10) of wavenumber whereas in the
remaining considered interval, it is decreasing. Moreover, phase velocity for
impervious surface is greater than that of pervious surface.
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