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Some inhomogeneous cosmological models of Szekeres type have been
obtained for the case of a viscous fluid distribution. Various physical features
of such models have been discussed.

1. INTRODUCTION

Inhomogeneous cosmological models play an important role in understanding
some essential features of the universe such as the formation of galaxies during its
early stage of evolution and the process of homogenization. The early attempts at the
construction of such models have been by Tolman (1934) and Bondi (1947) who
considered spherically symmetric models. Inhomogeneous plane-symmetric models
were considered by Taub (1951, 1956) and later by Tomimura (1978). Szekeres (1975)
considered a more general type of orthogonal metric and obtained a class of solutions
corresponding to pressure-less perfect fluid. Szafron (1977) extended the work to
the case of a perfect fluid with a non-vanishing pressure. Recently Collins and Szafron
(1979a, b) and Szafron and Collins (1979) have introduced the concept of intrinsic
symmetry to have a systematic study of such models. In the present paper we obtain
some cosmological models of Szekeres type corresponding to a viscous fluid. Various
physical features of these models have been discussed.

The line-element corresponding to the inhomogeneous universe is taken to be
of the form

ds* = —dt* + A2dx* + B (dy* + dz) SHER)
where 4 and B are functions of x, y, z and ¢. The energy-momentum tensor is
taken to be that of a viscous fluid given by (Landau and Lifshitz 1963)

T, = (e + p) vov/ + pgl — (v}, + visi + vivhvy + v;v’v’:l)

- (?; — %n) V;:( g+ Vivj) (1.2)

¢ being the density, p the pressure, v and §{ coefficients of viscosity assumed to be
constant and »* the flow vector of the fluid satisfying

vt = — 1. ...(L3)

The coordinates are considered to be comoving 5o that v = v = y3 = O and y* = 1.
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The field equations
1

— 8T} =R} — ng: ..(1.4)
lead to
A 2) o] = LBy AR B e B
8w[p—2n7—(c~3~n) v,.,]~A,Bz+BZ 2 + %
2B4s i
—-[ B + F] ...{(L.5)
_a.Bs 2 v]_ 1 [Bu_ 4B [Ass AyBs
8”[” g ( 3“”) V;’]"A2 [F 4B ]+ A AB
AsBa] [Au Bu A4B4 ]
AB
(1.6
. Bl o . 2 1 . l Bi _ AlBl] [A22 _ A?Bg
8”[” 2N (C 3”)”:‘]“,42[3 +B2 4 ~ 4B
AsBa [ Au B“ AABd. ]
AB
(1)
- _ 1 2_B_1_1 1 _ 24,B, Azz Ass Ba: B} Bss
Sme = Az[ terT B )T ElAa T AT E BT
B: B} 2448,
Bz] - {BT + 7!73—] ...{(1.8)
.B|2 BIB2 A2B1 -
BT B T 4B = 0 ...(1.9)
Bys _ EL‘BS _ AasB:
- =0 ...(1.10)
Aw _ ABs_ AsBy _
= -T2 =0 L(111)
B AdBi
% — 43 0 (1.12)
Ase _ A:Bi | B ByBy
Ass _ AsBi | Bu _ BiBi _
-t ST (1.14)
Eh’minating p between (1.5). (1.6) and (1.7), we get
A,B: Bu_*_ﬂ +_1 Bsz +B_13__£L__/13:3_AQBI AsBs
“AB B2 B B B? B? A AB AB
_[Bu B _ éi - é.B_‘] [~ — ]_
[B + B + 16 = =0 ...(1.15)
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and
Asz 242B; _ A:s 243Bs

4 AB A AB

In the above suffixes 1,2,3,4 after 4 and B denote differentiation with respect
to x, y, z and ¢ respectively.

...(1.16)

2. SorLuTioNs OF THE FieLp EQUATIONS

We assume that B, # 0.
From (1.9) and (1.10), we have

_ GB
A= 5 ...(2.1)
where G is a function of x and ¢t. From (1.12) and (2.1), we have
B = G/H ..2.2)
where A is a function of x, y and z. From (2.1), we get
= G, — H,GH*. .(2.3)
From (1.11) and (1.16), we have
Hps
(?)1 —0 (2.4)
and
Hsy -~ Hsz\ _
(_*__H )1 - 0. (2.5

Since the general solution of the above set is difficult, we consider the special cases :
Case 1 —We take

= {\P (x) ¢ (s Z)}ﬁl

Equation (1.15) then reduces to

-z [(¢“ ("53)3] -y .2.6)

and

G -’ﬁ«( (Gl (4G,

(G)‘ + ¢ ) + L 16m (2 )‘ L i6s (27
where L is a constant. Integrating (2.7) we get

Gu , 161 1 G _ _

where / is a function of ¢ alone. Equation (2.6) shows that the 2-space Vi whose
metric is

dz* = ¢* (dy® + dz¥) ...(2.9)
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is of constant curvature L. By suitable transformation of coordinates the metric can
be reduced to either of the following forms which correspond to positive, negative
and zero curvature of ¥, respectively:

1 oA 2
2 = — dr? 200 o 2 2 2 P02

ds 4 + e [KR"+1 (1+ aRR) dR* + R* (db +sm9d¢2)]
: ..(2.10)

ds? = — di* + &2 [L (1+ or RY dR? + R (df® + sin h26dqb2)]

KR*—1 oR
2.11)
ds? = — dt® + e** L 1+6~)LR 2dR2+R2(d2-{-dzz).| (2.12)
= KR éR Y | e
where 2 is a function of R and ¢ satisfying the equation
—22

Ma + %‘ A — K"’z + 16m A = 1(2) ..(2.13)

K being a non-zero constant. Metric (2.10) is obviously spherically symmetric and
the metric (2.12) is of plane symmetry.

Case 2—Here we assume H to be either of the following forms:

(i) H =sin {f(x) +My}
(ii)y H = sinh {f(x) + My}

(ili) H = cosh {f (x) + My}

vv H=a(?+22)+by+cz+ d
(v) H = aeM? + pe™™y 4 csin (Mz + d)

where a, b, ¢, d are functions of x and M is a constant. For the choices (i), (ii) and
(iii), eqn. (1.15) on integration leads to

Gu , 1 M +1 Ga

By suitable transformation of coordinates, the metric (1.1) can be reduced to
the following forms corresponding to (i), (ii) and (iii) respectively:

2
dst = — di* + {G1 — G cot (X + MY)} dX*+ G2 cosec® (X +MY) (dY2+dz?)
...(2.15)

2
dt = — dt* + {Gl—G coth (X+MY) } dX24-G? cosech® (X + MY) (dY*+ dz%)

...(2.16)
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and
2
ds? = — dr? +{Gl —G tanh (X+MY)} dX*+G? sech? (X+MY) (dY*+dz?).
..(2.17)
For the choice (iv), eqn. (1.15) on integration leads to
1 G 1 Gi G,
o (dad — b —c* — 1) + -é‘—“ + 75; +16m ¢ =1(). ..(2.18)
n 2

We assume that 4ad = b2 + ¢* + land I (¢) = — + 3 (8nm)°, where nis a con-

~

stant. Equation (2.18), then gives on integration

G = k (x) e—16m4t/3 1173 cos®#® log (mt~3/2)4, for %— 7)—}—% <0

{oc - \/:('2/3'n+1/9)} (2.19)
( 2 1
G = k (x) e=16mm/3 11 cosh® { log (mr*)p }for Sn+g>0
where {g - ¢(2/3n+1/9)} .(2.20)

2/3
G = k (x) e—16mntf3 112 { log (mt3/2)} Tfor ond 4o=0 .20

where m is a function of x. The metric (1.1) then assumes either of the following
forms corresponding to (2.19), (2.20) and (2.21) respectively:

ds? = — di* 4 k? (x) e—32mn¢[3 123 cost’s {log (mt-slz)u}

fo _ 2m { ~3/2 u})z 2 dy* + dz” ]
X [(f 3, ©tan log (mt=212) dx* + YT e s——

(222

ds? = — di* + k® (x) e—32mwnt/3 1273 cosh®/® {log (mt"”z)“}

N 2m ; o dy* + dz* ]
X [(}: + 3, Btanh {log(mt" 2)3}) dx +a(y"+zz)+by+cz+d

.(2.23)

4/3
s = — di* + k* (x) e—32ant[3 12 {log (mtw)}

1 2m, }2 . dy* + dz? ]
. [{Tl * T log me et + a(*+z)+by+cz+d

.(2.24)

k (x)
a(*+ 2 +by+cz+d

where f =
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For the choice (v) with m? (4ab — ¢*) = 1, eqn. (1.15) gives on integration
G;A 1 64
+ 3G

Assummg 1(t) =nit* + 2/3 (8=)*, we have from (2.25), the values G given by
(2.19), (2.20) and (2.21). The metric (1.1) then assumes either of the following

forms:

+ 16m % — 1(2). ..(2.25)

ds’ = — dt* 4 k® (x) e—32ant'3 */3 cost/3 {log (mt‘slz)‘}
3! 2m P B S dy* + dz*
X [(_“F‘_ Tm “a"{b? (mt=*7 }) D T T pe Mo ¢ si(Mz )
...(2.26)
ds® = — dt* + k? (x) e—32mmt/3 21? cosht/® {log (mt”z)“}
2 ' 2 dy’ + dz*
{( 14 ._"ﬂ 8 tanh{]og (mt.\x/z)ﬂ}) dx? +aeMy+be-My+ ¢ sin(Mz + d)
(227
4/3
ds? = — dr* + k? (x) e—32amt/3 12/ { log (mt3/2)}
Fr n; 2 dy* + dz* ]
% [{F T 3 iTog (e } &t T b M e sm (M2 d)
...(2.28)
where F = k (x)

aeMyt-be~My 4 ¢ sin (Mz-+d)

3. SoME PHysICAL FEATURES
Cuse 1 —The pressure and density for the metrics are given by

8mp = - 2 (1) + 817( 4 _y)[mm R4 :]

1+ RXxy
_oaye . 2RAN, oy [ 3+ RN
817“3)\41_1*\-1»12)\1_&’ 1+RA, |”

We see that if 7 = { = 0, the pressure is homogeneous. The viscosity therefore
introduces inhomogeneity in the pressure term.

Ify=¢=20andp =0

) Kok
z+zo(R)=IIZ(§)[JKe* Ke +1—smh1\/5;—]forp>o,x>o.

KR TReX [/ ZKek —Keh
t+t0(R)——-K(w)[\/ Ke ﬁ—l-{-cosh-l\[ Fe]

F F
for F<O0,K>0.
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t+ 1,(R) = (F(II;)),/, [tsur \/ ke —\/_Kel \/‘Igel + 1]

for F >0, K< 0.

and

The density in these cases are given 'by

87e =
3FR' + F,
o VFyKeNF' +1 [0ty F [ VEKeAF1 —,———1)}]
e [ -+ pEIve SR K% «/__—K_em sinh~1y/ Ke*F
for F>0,K > 0.
Rore — 3FR? + F
oA + vV ~F —+/ —Ke’F1—1 {aﬁ_ fl__(\/—KeAF—l
PP YE R K\ y"KeAF1-1
—~ cosh-1 4/~ KelF—’)}] for F<0,K>0.
and
e = 3FR! + F1
1 VF vKerF-* 41 [0ta _L( i1 v ZRAFT
e [:? + s [ (KT sin KerF
T ReAf-
- PR M r>o k<0
VEKerF1 41

(2.10) in this case is a particular case of the inhomogeneous model considered by
Bondi (1947). Similarly (2 12) is a special case of plane symmetric inhomogeneous
model considered by Tomimura (1978). It can be seen that when A is a function of
t alone, metrics (2.10), (2.11) and (2.12) reduce to Robertson-Walker metric of con-
stant curvature — K.

Case 2—The pressure and density for the models (2.15), (2.16) and (2.17) are
given respectively by:

R 1

Srp= —20() + 8 C+3n )| G+
G S ot (x+ MY
2Ga (Gy. Gt 3ot
$re = 304 Gle ) apa|g 3
¢ g’ ~ cot (X+M¥) © g‘ cot (X+MY)
(&)
4
81rp=—21(t)+811<c+~§7]) 3g‘+G G /s
~~ — coth (X+MY)

G
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2G, (& Gy
3G3 ¢ \G )4 M2+1{G 3 coth (X+ MY)
8775 == ﬁ + Gl - Gz G
G coth (X+ MY) é‘—- — coth (X + MY)
and
(&)
8np=—-—21(t)+817<c+g—'0> 3g4+G G Js
?;'— — tanh (X MY)
264 (G, G _
363 z ( ¢ )4 Mis1| & — 3tanh (X+MY)
8ne = *GT -+ G - "'Gz G
& — tenh (X+MY) -

G tanh (X 4+ My)

The pressure p, density e, coefficient of shear o and the expansion factor 8 for
the following models are as follows:

For the model (2.22):
4

2 8o ( ¢+ 37) |

Pl tan {log (mt"/“’)“}]

X [;—1(-— 1671 + i— n %tan {log (mt'3’2)°‘})
_2m o tan {log (mt"’/z)“} X (— 167 + J—)

3 m t

+ m—; o? (l — tan? {log (mt"/z)“}):l

8¢ = 5 1 X[sﬁ(—gi“”%

* ey ) 2 (_ 1 )2 { -3/2)a
+ . tan {log (mi—21%) }) Om® 16y + ; tan {log (m¢~-32/%)
2 m

1 - o
+§ Tn a2 \ 1677 + t_) (1 — tan? {log (mi1—37%) })

203m )
+ mt’l tan {log (mt"”‘)“‘}]

m1 (mt)" «2 sec? {log (mt-slz)z}
v3 [flf‘1 - % mim™' « tan {log (mt"”)m}]
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1 5 1
o = [f]f_l - g—mlm‘latan {mg(mz—a/Z)u” x [f]fl(_ 16w + -

+ 3t~ tan {bg (mt‘”z)“}) - ‘;'—Z—‘ « tan {]og (mt~3'=)°=} (—161r-q+ 17)

_’n_l 2 — 2 -3 /2y
+ ot © (1 tan {log(mt ) })]

For the model (2.23):
4
8n ( L+ TY‘)

A+ -% mym~' B tanh {log (mt3/2)s}]

2
811p-=——£+[

X [f,f“ (— 16my + 71 + -13- f tanh {log (mt3’2)9})

2 m

+ 3 —-[5 (— 167 - ;—)tanh {log (mt”)ﬂ}

+ r’.::_: 82 (1 -+ tanh® {log (ms® ’2)3} )] .

1 (=16 ]
[flf“ 3 m;m~! B tanh {log (mtw)a}] X [3flf ( 3 n+ 3¢

8me =

1 ) 2m1 12

+ -t-Btanh log (me3/%)B + 5 Bt — 16am + 7) tanh {log (mr3/2)®
2 —1,~1 @2 2 3/2\B 1

+§m1m 182 [ 1 + tanh?® log (m3/?) — 16,77,.;-7.

+ zﬁﬂ tanh {]og (m13/2)B ]
mi®

1 mlm‘lt“{%2 sech? {log (m,alz)a}

A [ fif + m,m—l 8 tanh {log (mzafz)s}]

1~ 16gn o L

[f,f— 3 mym-1 @ tanh {log(mts,z)ﬂ}] X [fl ( 16 + p
\
}

+ ~ B tanh {1og (me3?° )9} + %—mlm“ 8 tanh {log (m:s® ’2)}

(—16nn+:-) +$Jt 52(1 + tanh? {log (mtsﬂ)a})]
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w(odn)  far{oemeg

1 m,
[fl 3 m log (m#3/?)

For the model (2.24)

81:p=-———

3 2m1(—~16’rm+-%)
t log (m13/2) 3m log (mi37?) i (log (mi3 )
1 31 16 1 1 2
8me = - [ {‘" 3 LU 3_t+ 7log (mt* %) }
[flf + 3 m log (mt!/2)]

\2
+§m1(_ 16mn + F) %(_ - }1‘)/ {log (mt3’2)}2]

m log (mt3/?)

m
1 mt {log (mtd%)}#

\ 3[f1 3m 13;1 1(mt"2):]
6 [ 1 [ e+ e

3 m log (mt?' 2)

2m1 (— 16mn +T) -

+ 3m log (P Py + mt {log (mi* )R

For the models (2.26), (2.27) and (2.28), the expressions for the pressure, den-
sity, coefficient of shear and the expansion factor are the same as for (2.22), (2.23)
and (2.24) with the only change from f to F respectively.

We thus find that for the models (2.15)-(2.17), (2.22)—(2.24) and (2.26)-(2.28),
the pressure is homogeneous in the absence of viscosity, Inhomogeneity in the pres-
sure term is due to viscosity. It is also to be noted that for these models, the visco-
sity has no effect on the shear. For the models (2.24), (2.25), (2.27) and (2.28)
6 > 0as t —> oo. The models (2.23) and (2.27) have singularities at t = 0. These
models can be considered to be expanding from the singular state provided

lmlB f}. iml B for the model (2.23) and - 1m1 ﬁ<§-1 <%’ﬁiﬁ for the

model (2.28). The expansion for these models ceases after a finite mterval of time.
However in the absence of viscosity, 8 — 0 as  — oo so that the expansion con-
tinues upto infinite time. For the models (2.23), (2.24), (2.27) and (2.28)

lim

1> =

g
-5 =0
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Hence the models approach isotropy for large t. The density contrasts ?,2. z
€

tend to non-zero limits for large values of ¢ for the models (2.23) and (2.27) which
shows that, in general, inhomogeneity does not die out. However, when q, b, ¢, d
are constants inhomogeneity asymptotically dies out. The density contrast terms for
the models (2.24) and (2.28) vanish for large values of r. The models, therefore,
approach homogeneity in these cases.
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