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STATIC CHARGED DUST CYLINDERS IN GENERAL RELATIVITY
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The statie cylindrically symmetric interior solutions of Einstein Maxwell’s equa-
tions for dust have been obtained. The solutions are singularity free, physically
reasonable and can be interpreted as sources of Bonnor’s radial solution.

1. INTRODUCTION

Krori and Barua (1974) have obtained two static internal solutions of charged
dust cylinder of finite radius. One of them has singularity at r = 0. We have genera-
lized their solutions. The solutions are physically possible, singularity free and of

finite radius. Bonnor’s (1953) solution is found to be an appropriate external solution.
It is matched to the internal solutions obtained.

2. Tue FiELD EQUATIONS AND THE METRIC
The field equations are

;1 ‘ ; .
R;— - Rgj = —8aT) = — 8«( M + E) (D)
where M;, the material energy-momentum tensor, is given by

M; = ou'u;

...(2)
and Ej, the electromagnetic energy-momentum tensor, is given by
4nEl = — Fu F* 4 —l—g; Fi; F. e
The electromagnetic field tensor F;; satisfies the Maxwell’s equations
Fiijky = 0, Fij; = 4nJ*, .. (4

Since field is static Fy4 is the only non-vanishing component of F;; and the four cur-
rent vector

Ji = (0,0,0,0u%). ...(5
From eqns. (1) we have
Ry + R =0
and therefore the line element can be taken in Weyl’s cononical form (Synge 1960)
ds? = — -0 (drid-dz?) — r? ek det + e di? ...(6)
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where v and A are functions of r alone.
The field equations (1) for metric (6) are

e~ ("T’ — )\,§> = Fi Fl' = — E? ()

e- 1) (v,u + ,\,f) = — FuF1s = E2 -+(8)

102 (v,,l T — 20, — QF‘—) = —8mp + Fyu P — — 8np — E?
..(9)

where the suffix 1 after comma denotes differentiation with respect to. r and from
eqns. (4), we get

% (rez““ L F“) = dnore®v A, ---(10)

We also have T_"j.' = 0 which lead to the equation
aFy = pAq et -..(11)
Krori and Barua have shown that v must be a constant for the solution to be
regular at r = O and then that p= =% 6. From eqns. (7) and (11) it follows that

if p = + o, vis a constant which can be taken as zero without loss of generality.
Therefore we consider the metric

ds® = — e A (dr* + r* do? + d2?) + &} dr? -(12)

which belongs to Papapetrou (1974), Majumdar (1947) class. The field equations (7)-
(10) now reduce to the following equations

EY = — Fis F'4 = )‘,geEA ...(13)

A
dmp = + dno = e‘zA(,\”, Az +T‘) .(14)

3. INTERNAL SOLUTIONS

We have two equations (13) and (14) in three variables A, Fi4 F* and p (==0),
so one assumption is necessary to obtain the solution. Therefore we must either
assume some condition on physical ground or choose A as function of r which gives
physically possible solution. In the following the latter one is considered.

(I) Suppose

Er = (1 — br) esor ~(15)
where a and b are constants. Then eqns. (13) and (14) give
E? = — Fy F¥ = (a — b) n’r*™? ¢%," «+(16)

and
4mp = + 4mo = p? 2 e“u’[a— b —( a? +bz)r”

+ ab (2a—b) r*» — azbﬂr“] ~(17)
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respectively. We observe the following:

(i) When b = 0 and g>0, we get Krori and Barua’s solution.

(if) From eqns. (17) it follows that for o to be finite at r = 0 we must have
n>22. If0<n<?2, the solution (15) is non-singular but # and F,F'4 become infinite
at r = 0.

(iii) Equation (16) shows that in order to have Fy4 F!*<0 g must be greater
than p.

(iv) a7b, otherwise F;; F** = 0 and p will be negative as follows from

n 2
dnt = — pPgirin-t glar [(a,,n — _;_ ) + _Z_] . ...(18)
(v) Ifag=0,
4np = — bnr"2 (1 4 bro). -+(19)

This shows that b must be less than zero and the boundary r = ry of the solution
must satisfy the relation r2 < (—1/b).

Now we take g0, b0 and consider the following two cases where r = po is
the boundary.

(8) b>0. For p to be non-negative, a and b (a>>b) must satisfy the inequality
I ko — /1 — 2k —3ki ~a _ L+ ko+ V1 2k — 3k} 20)
2ko (I — ko) = 2ko (1 — ko)
where O<ky = brj £3. Clearly a mrst be positive.
(b) b<0. In this case p>0 provided a>b and

1 — ko — /1 + 2k — 3k2

a_ | — ko + /1 F 2ko + 3kZ
ke (1 Ko) S Ty S %o (1 + Fo) @1
where O0<ky = —brj € 1. Constant ¢ can be positive as well as negative.

(II) Suppose

e~*X = F* (log R)*» ..(22)
where R = a + br®, p7#0, b0 and a>0. Then from (13) and (14)
2 2b‘2 2p-2
— F, F% — pnoTr
u F F-R® (log R) 7+ -..(23)
4np = + 4no = L bro(l log R } 24
R = = 4uC == FW{[JZ)[ r( P) a log ] . ( )

For p to be finite at r = 0, we must have n»>2. If 0<n<2, the solution (22) is non-
singular but p and — Fy4 F'4 become infinite at r = 0,
When p = 1, eqn. (24) shows that p is non-negative if either
— 1/
b<0,a>1landr< (L~b—l—) "

l
or !> ...(25)

—_ 1/
b>0,a<1andr<(}ba) "

|
J
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If p 5~ 1, we found that the solution (22) is physically plausible at least in the
cases given in the following table which also contains the range of validity of the

solution in each case.

Case Value Value Condi- Value Range of r for which p is non-negative
No. of b of P tion on a of n and R> 0
Q) 5<0 P>0
. 1 2aloga
(ia) p= 3 a>1 nz2 (1) 0SS b 1 2l0g @)
if 0<<2 log a<a=—1.
Q) 0<rn< “{% if 2 log a®a—1.
(ib)0<p<-li a1 22 (1)0<rm<r, if 2p> 2“;_‘?: —a+1.
@ o< <=t if2p< Zaloga .y
—-b a—1
(ic) p> %— a>1 n22 (1) 0<<r<Cr, if p is an integer greater
than 1.

(2) 0<<r7<Cr, where r, is the smaller
of ri and a_—_bl, if p is not an
integer.

(i) b>0 p>0 a<l] n22  0<rar,.
pisaninteger
greater than 1
(i) b<0 p<0 (iii a)
pisa nega- PL ) n>2 (1)0<rﬂ<_ibifp<-1bun+2p>
tive integer log a>0 2 log a.
Qo< Z—[p+\/p'2+2 log a:]
) ifp<—1but1+2p<2loga.
(iii b)
P42 >z osm<( LY.
log a<0
(iv) b>0 p<0 a>1 P2 0 g[pﬂ/;?iizloga ]

In the table r, = 7)(—1—‘-1—2;) [ p +loga —(p — log ;1)?3-—27;8_;1] .

4. EXTERNAL SOLUTION AND THE MATCHING AT THE BOUNDARY
The external solution must be a cylindrically symmetric static solution of
Einstein-Maxwell’s equations for empty space and have the form (12) and hence
satisfies eqns. (13) and (14) with p = o = 0. The solution is found to be
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dt’
(d + ¢’ log r)?

which ¢’ and d are arbitrary constants. This solution has also been obtained by
Bonnor. From equation (13), we obtain

dst = — (d + ¢ log r)® (dr® + ride® +d=%) + ...(26)

’

Fa— 4 _rc N .27

for the solution (26)

We assume the continuity of g;; and their first derivatives across the boundary
of the distribtion r = ro. Therefore from eqn. (13) it follows that F,4 is continuous
across the boundary. Now define g (r), the charge contained in the cylinder of
radius ~ and of unit length, as

g () = 2n _(E'J‘* v~z dr. ..(28)
Equation (10) with v = 0 then gives

F = ZJ;(L) (e“’") int. . .(29)
From the continuity of F4 across r = ry and eqns. (27) and (29) it follows that

xc" = 2¢(r) = 2q (say).

When g5£0, the solution (26) can be written as
. dr?
ds® = — 4g* ® (dr? 2de? z2 A .
s g* (log cr)? (dr* + ride* + dz?) -+ 4 (log cr)? 309)
From the continuity of g,; and their first derivatives across the boundary we

obtain the constants ¢ anb ¢ appearing in the external solution (30) in terms of the
constants appearing in the internal solution. It is found that

1 1 — bry an
= — ¢ —
¢ o P nry [b—a( l—br(']')]
= nerin [b —a (1 : br{,'):r G2
4 (1 — brz) e
in case of the internal solution (15) and
- 1 exp (a + brg) log (a 4 brﬁ) 3
ro np br:
= nepzbZFzrf,"[ log (a + hr(',')]w—2 (34

4 (a + brg)2

in case of the internal solution (22).
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The direct calculation of ¢ (r;) from (28) for the solutions (15) and (22) lead to
the expressions for ¢ as given in (32) and (34) respectively.

5. DiscussioN

The solution (30) has singularities at r = 0, r = 1/c and r = oo. Hence the
solution is valid either in the range 0 <r<1/c or in the range l/c <r<eco. Assuming
that the range for the solution (30} is the latter one i.e. 1/¢ lies inside the source,
Bonnor has shown that the solution (30) corresponds to the field of a massless line
charge. In our case p is non-negative and hence we assume the validity of the solution
in the range 0<r<1f/c. We have verified in all cases considered in section 3 that rq
is less than 1/c. Hence solution (30) is valid only between ro and 1/c.

The Gauss’ gravitational theorem in its relativistic form as given by Whittaker
(1935) states that '

(a2 | 8o | L8r2))
Xﬁ{“’ Au,v) +8 &(u,v) +g o, y)}( ) du dv

_ snm( TS - —;_—T)(—-g)l/ dr dz do (35

where g¢ is the three vector representing gravitational force measured by an observer
at rest which for the line element (6) is given by

1 u ag“
2 g 0%’

f = (=123 x;, =r X2 =2, X3 = Q) ...(36)
The integration in (35) is taken over any simple closed surface § in the instantancous
space of the observer and u and v are any two parameters which specify the position
of points on S. The right-hand side of (35)is proportional to the quantity, which
in relativity plays the part of gravitational mass, in classical mechanics. By denoting
the left-hand side of (35) by 4 =M where M is the gravitational mass inside unit
length of the cylinder of radius r,, Bonnor has obtained

A -1

M= — ;_— log( cm)] . ...(37

The mass M, from the right-hand side of (35) is found to be
nry
M= —— [ a1 br7) -] - (38)
21 - bry)
and
npbry
M= — --(39)

2 (a + brl) log (a + br{,’)

for the solutions (15) and (22) respectively. Substitution of values of ¢ from (31) and
(33) in (37) yield (38) and (39) respectively.
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It follows from the equations (37) and continuity of g,; at r = ro that

M* 1 I PEYS
¢~ 4g7 (log cro)® [e int. or ex. ]r=ro -++(40)

. = . =
and so M- = ¢* according as[ e“] < 1. For

re=rgp
instance M*>g-if b = O and ¢ > O orif @ = 0 and b < O for the solution (15). In
case of solution (22), the ratio M?/¢*) depends on the choice of F also.

It should be noted that every physically possible solution given in section 3 is

singularity free and is of finite radius.
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