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A unified linear theory of the well-known problems of thermal and thermo-
haline instability which also includes a more general analysis of the Rayleigh-
Taylor instability is given in the subsequent pages. The configuration inves-
tigated here is that of a continuously stratified layer of viscous, incompres-
sible fluid, statically confined between two horizontal boundaries of different,
but uniform, temperature. The original stratification, which might be pro-
duced, for example, by & dissolved solute of negligible diffusivity, is assumed
to be of the exponential type, namely p = pye—52, where 3 is & constant and z is
the vertical coordinate. The results obtained are divided into three sections,
3-5. Sections 3 and 4 completely analyse the cases according as the fluid
layer is subjected to a uniform underside heating with 8 > 0 or a uniform
underside cooling with 8 < 0, respectively, where the assumed properties of
the fluid are such that an increase in temperature produces a decrease in
density. One of the principal results established in section 3 is a ‘Circle
Theorem’ which limits the complex amplification rate of an arbitrary oscil-
latory mode inside & circle, In section 5, the ‘Circle Theorem’ is further
shown to give rise to an upper as well as a lower bound for the frequency of
oscillations of an arbitrary mode in the linear axisymmetric stability problem
of spiral flows which is in complete accordance with the numerical caleula-
tions of Chandrasekhar (1961).

1. INTRODUCTION

The present paper is an attempt to reconstruct the stability problem of a
fluid layer heated or cooled from below on the hypothesis of an original non-
homogeneity present in.the fluid. Viewing from another angle, it can also
be looked upon as an extension of the Rayleigh-Taylor instability problem
(density being a continuous function of the vertical coordinate) where the
fluid is heat conducting and its upper and lower layers are at different tem-
peratures. The motivations for undertaking the present investigation are the
following: (a) to present a unified treatment of the Bénard and Rayleigh-
Taylor instability problems, (b) to propose a mechanism which can directly
lead to overstable solutions in the Bénard configuration and (¢) to make
detailed investigations of the models treated by Stern (1960), Turner and
Stommel (1964), Turner (1965, 1968), Sani (1965), Veronis (1965, 1968) and
others when the mass diffusivity of the chemical dissolved is negligible. The
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subsequent analysis is based on the rather plausible hypothesis that in reality a
fluid is originally non-homogeneous. The gravitational effects of even a very
small amount of this original non-homogeneity may turn out to be quite
significant for the problem and consequently its neglect everywhere may not
be justified. The other assumptions involved in the earlier theories (on
Bénard convection), namely (i) the smallness of the initial motion, (ii) the
well-known Boussinesq approximation, (iii) a linear temperature profile ex-
tending throughout the entire fluid layer at the start of the motion and (iv)
the negligibility of the forces arising due to surface tension, are assumed to be
valid throughout this investigation. It is further assumed that the dis-
turbances are infinitesimal so that the linear stability theory holds good. The
normal mode technique is applied in the mathematical analysis.

The results obtained in the paper are divided into three sections, namely
3, 4 and 5, and the configurations treated therein are as explained before. The
stability problem thus formulated is shown to depend on four non-dimensional

numbers, viz. R, = gapd* , Bo= ng , M =ds and P =v/x where ¢ is the
Ky

acceleration due to gravity, «, « and v are respectively the coefficients of
volume expansion, thermometric conductivity and kinematic viscosity of the
fluid; d is the layer depth and B and & are respectively the maintained uni-
form temperature gradient and the original non-homogeneity factor. The
non-dimensional numbers R; and P are the well-known Rayleigh and Prandtl
numbers which occur in the study of the classical Bénard problem. Further,
for small values of M, we have, at places, used the approximation Roe~M? =~ R,.
This will now be referred to as the small M approximation and a result is to
be regarded as independent of this approximation if it is not mentioned.

2. THE PHYSICAL PROBLEM AND ITS FORMULATION

A viscous incompressible fluid of varying density is statically confined
between two horizontal boundaries z = 0 and z = d which are maintained at
constant temperatures 7'y and 7', respectively. The original non-homogeneity
of the fluid is assumed to be of the exponential type, namely p = pye~?2.
The problem is to investigate the stability of this configuration.

Let the origin be taken on the lower boundary z = 0 with the z-axis
perpendicular to it along the vertical. The xy plane then constitutes the
horizontal plane.

‘We now proceed to obtain the resultant density distribution which arises
due to the interaction between the original and the thermal stratifications.

Consider Q(z, ¥, 2) to be an arbitrary point in the fluid at which the tem-
perature is 7T'(z). We then assume that the resultant demsity at Q(z, y, 2)
can be thought of as due to the following three density fields: (a) a homogeneous
fluid of density p = po, (b) an originally homogeneous fluid of density p = po
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upon which a non-homogeneity of the form p = pee* is imposed and (c)
an originally homogeneous fluid of density p = p, upon which a uniform
temperature gradient (T,—7;/d) is applied and thus making it non-
homogeneous according to the linear law p = p[14a(T—7)]. Then on the
hypothesis that the resultant density distribution at @(x, ¥, z) can be obtained
by superposing the changes due to (b) and (c) on (a) at the point @(z, y, 2),
we have

p = resultant density at (2, y, 2) = pole~% 4 a(Ty—T)]. .. I

The stationary state of the system whose stability we wish to examine
is then characterized by the following solutions for the velocity, temperature,
density and pressure fields respectively:

velocity = 0
T =To—pz
) p = pole~#+a(To=1T)] L
an

1 22
p= PO_QPOI:S (1"'@_&)"'%32—}

where p, is the pressure and p, is the density at the lower boundary z = 0

and B = T";Tl denotes the maintained temperature gradient.

Let the initial state described by eqns. (2) be slightly perturbed so that
the perturbed state is given by

perturbed velocity = (u, v, w)

T = Ty—Be40
P'=Po[3"az+8£+°‘(To—T—0)] o ®
and Po
P =p+dp

where (u, v, w), 6, 8p and 8p are respectively the perturbations in the velocity,
temperature, original density and pressure fields. ’

Then the linearized perturbation equations (using Boussinesq approxi-
mation) of momentum, continuity, incompressibility and heat conduction,
when the disturbances are analysed in terms of normal modes by seeking
solutions whose dependence on z, y and ¢ is given by

exp [¢(kx+kyy+nt)], .. .. .. .. o (4)
become
. . . d?u
[inpo4pt® u = —zk28p+,u-d—z2 .. .. .. .. (5
, 2 , d*»
[inpy+ uk?lv = ——zk”Sp-{-y.-d—z—z- .. .. .. .. (6)

4B
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. ds R d>
[enpo+phjw = — —;Ep +gap09-gbp+#g:70 = (1)
, dw
t[uk, +ok,] = — T .. .. .. .. .o (8)
ndp = (wd)pye =% .. e .. o {9
and
nf—x[D?>— k210 = Bw .. .. .. .. .. (10)

where’k = /(k,2+k,?) is the wavenumber of the disturbance, » the coefficient
of viscosity of the fluid and » a constant which can be complex.

Eliminating u, v, 8p and 8p from eqns. (5) to (9) and changing the result-
ing equations into non-dimensional form, we obtain

Rya?e~—M2z1

o(D*—a?—o)(D?*—a*)w, = R,a%c0— 2 Wy

and
(D?—a?=Po)0 = —w, .. .. .. .. .. .. (12)

together with the associated boundary conditions

w, =0=40 for 2, =0and 1

and either
Dw, =0 for zy =0 and 1 (rigid boundary) .. . (13)
or
D2y, =0 for z; = 0 and 1 (free boundary)
where
2 =z/d; a=kd; 0 =20
D=ddfdz;, oc=ind*v; P=vlx
2 4
M=ds: =Ty g =%\ (1
K . KV
4
2, = B

In the subsequent analysis we shall use w for w, and z for z;.

Thus, for a given @, M, R,, R, and P, eqns. (11), (12) and (13) present
an eigenvalue problem for ¢ and the system is unstable, neutral or stable for
these values of the parameters according as the real part of o, namely oy,
is positive, zero or negative respectively.

It is to be noted that eqns. (11) and (12) can be obtained by putting
K; = 0 in egns. (1), (2), (3) and (4) of Stern’s paper (1960) but still we prefer
to deduce them here on account of the totally different motivations of the two
problems. The approach presented here is precisely on lines of unifying the
classical Bénard and Rayleigh-Taylor instability problems and consequently
has its own points of interest.
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3. OX THE MARGINAL STATE

The configuration in this case is characterized by 8 > 0and 8 > 0. Then
multiplying eqn. (11) throughout by w* (the complex conjugate of w), inte-
grating the resulting equation over the vertical range of 2z by making use of
the boundary conditions (13) and replacing for f :Ow*dz from eqn. (12), we get

from the real part of the final equation

1 1
a,f [1DPw(? 4202 Dw|? +a*fw 2] dz4 (0,2~ 0.2) f [1Dw|? 4+ a®\w(*]dz
[4 [

1

1 1 2
= o, R,a® f [1D8|2 4a?0)21dz 4 B1a?P(o,2 4 0,2) f 16)2dz— Ezpif e~ Mzjyp|2dz.
o 0 1]
(15)
Equation (15) shows that the marginal state is definitely of oscillatory charac-

ter, because
o, = 0 implies o;isreal and £ 0 .. .. .. (16)

(o7 being the imaginary part.of o).

This confirms that principle of exchange of stabilities is not valid whether
the boundaries are rigid or free and it is the overstable oscillations which will
manifest at the marginal state. Hence, the introduction of an original non-
homogeneity in the fluid alters the character of the marginal state (compare
Pellew and Southwell 1940) in the Bénard configuration. It is further noted
here that the analysis of Veronis (1965) also indicates a similar possibility
but his investigations are restrictive in the sense that it deals only with the
case of free bounding surfaces.

3.1. An Exact Solution: Case of Free Boundaries

The governing differential equations in the present ease can be obtained
by putting ¢ = do; in eqns. (11) and (12). Further, these are to be considered
with the boundary conditions for free bounding surfaces. It can then be
easily shown that the value of the critical Rayleigh number together with the
corresponding frequency and wavenumber are given by

_ R,P  277*
Rlc_l+P+T .. .. .. o (AT
2 R,
0, = _~—3P(1+P) .. .. .. .. (18)
and
n?
ac2=§ .. .. . .. . (19)

which correspond to the solution

w = §in 7z, .. .. . .. (20)
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The above exact solution has also been obtained by Veronis (1965). One
observes here that, for a given R, it is necessary for the destabilizing tem-
perature gradient, expressed in terms of the Rayleigh number R;, to exceed

1-1}-)P Rs. Further, in
4
situations where the original stratification is very stable, i.e. R, >2—74"~ , the

the minimum value for ordinary Bénard convection by

destabilizing temperature gradient need provide an effect on density that is

only of B;. 1In other words, it signifies that even when the total density

P
P41
field is gravitationally stable, the system can become unstable through over-
stable motions. These conclusions are valid, of course, in the framework of
linear stability theory (Veronis 1965).

3.2.  Solution of the Characteristic Value Problem: Case of Rigid Boundaries

Here we propose to solve the above characteristic value problem for
the case of rigid boundaries by a method which, though differing from the
variational methods developed in Appendix A, leads to the same secular
determinant. The present method of deriving the secular determinant is
applicable even if a variational principle does not underline the problem.
But the existence of a variational principle ensures that by keeping more and
more terms in the Fourier expansion for F and solving the secular deter-
minant for E,, we approach the true characteristic value monotonically from
above.

In view of the symmetry of this problem with respect to the bounding
planes, we shall find it convenient to translate the origin of z to be midway
between the two planes. The fluid will then be confined between z = 41/2
and we shall have to seek the solutions of equations

tR,a?

(D2 =2 —io)(DP—a¥)w = 52w+ F L@
and
(D*—a?—iPo))F = —R,a®w .. . .. o (22)
which satisfy the boundary conditions
F=0=w=Dwfor 2= 41 .. .. .. (23)
where
F = R,a%. O .73

To solve the above problem, we expand F in cosine series in the form

F= dnoos[@m+lm] .. .. .. (25

m=0
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and express w in the manner

w= > ApWm . e ... (26)
m2=‘0
The w,, satisfies the differential equation
y 2
(D?—a?—io)(D?—a®)w, — Zl;f W, = ©o8 [(2m—4-1)7z] .o (2N
with
wy = 0 = Dw,, for z = £} .. .. .. (28)

Now putting for F and w in eqn. (22) in accordance with eqns. (25)-(28)
and equating the Fourier coefficients of both sides, one gets, after a lengthy but
essentially straightforward calculation, the following secular equation

1(Csn
“ 5 (1;10:21 —y2n+1)3nm—(n/m) ” =0 .. .. .. 29
where
(nfm) = (=1)™*"12(2n+4+1)2m+1)n*yon11¥emi1 A (G —¢2*) .. (30)
¢, = n*n*4a*+ioP .. .. .. .. .. (31)
y 2

%: (0202 a2 4 iog] [n2n? 4a?] — ”;i‘f 3D
= 1/(¢, tanh ¢,/2 —¢, tanh ¢,/2) .. .. .. .. {33)

and ¢;% and g¢,2 are the roots of the quadratic

tRya®

(q*—a®)(¢* —a*—ioi)—

(34)
ag

A first approximation to R; will be given by setting the (0, 0) element of the
secular matrix equal to zero and ignoring all others. This corresponds to the
choice of cos 7z as a trial function for F. Since, in the above process, we
solved the fourth order differential eqn. (27) relating F and w, ie. in
effect solved ‘two-thirds’ of the problem exactly, we expect that the first
approximation will give good results.

The solution for R, in the first approximation is given by

n%+a?+iPo; -
V= e e .. .. (35)
@yi[1—4ay; A(g:*—¢27)]
The results of some calculations based on eqn. (35) are given in Table I.
Tasre I
Rg a ag Rl
0 3-12 0 1715
60 31 2-9 1753
1320 34 22-3 2309
3340 42 17 3381
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Rayleigh numbers for values of R,, a and o; when both the bounding surfaces
are rigid and P = 1.

3.3. Bounds for the Growth Rate: A Circle Theorem

Here, we shall show that for an arbitrary oscillatory mode (o; 3 0) the
complex rate of growth must lie inside a circle whose centre is the origin
and radius /(R,/P).

To show this we write eqn. (11) as

[D2—a?Pw—o[D* —a?lw = R,a%0—
where o* is the complex conjugate of o.
Now multiplying eqn. (36) throughout by w*, integrating over the range

Rzaza*e—Mz

PP (36)

of z by making use of (13) and replacing for le fw*dz from (12), we obtain

from the imaginary part of the resulting equation
1 1 R.o-Mz 1
f |Dw12dz+a2f [1— Ji—T:I lwizdz = —Rlasz [812dz < 0. (87)
0 - 0 Pio| 0
Hence, from (37) we must have
o2 +0.2 < R,[P. .. .. .. .. (38)
Thus, the growth rate of an arbitrary oscillatory mode (whether stable, neutral
or unstable) must lie inside the circle given by (38). It can be readily checked
that oscillations given by (18) for neutral modes do lie inside the above circle.
One of the implications of the above cirele theorem is that for small values
of R,, oscillatory modes are not expected to manifest. In fact for R, = 0,
the above circle theorem is violated and oscillatory modes cannot exist in
that situation. This fact, as one knows, is in perfect aceordance with the
results of classical Bénard problem (for which R, = 0). Further, since the
radius of this bounding circle is independent of R, it is probable that a more
rigid limitation on ¢,2+4-0;2 might be found.

3.4. Non-oscillatory Modes: A Sufficient Condition of Stability: Case of Free
Boundaries

For non-oscillatory modes, o; = 0 so that ¢ =o, only. Equations (11)
and (12) can then be combined as
[(D?—a?)% —op(1 4+ P){(D?*—a?)2 4 Po,2(D?—a?)]w

R.a® R.a® |
= 2 2 -Mz 2l ope - M2 ..
= — R,a*w Po, (@® 4 Poa,)(we—M?) Po, D?we-M2. (39)

Muitiplying (39) by w* throughout, integrating the resulting equation over
the range of z by making use of the boundary conditions (13) and using the
result

1 1 M2 !
Realf w*DR[e~Mey)dz = -—f lDwIze'Mzdz+—2—f e~Milypi2dz .. (40)
0 1] [/



234 MIHIR B. BANERJEE

(which can be readily obtained by integration by parts and using (13)), we
have from the real part of the final equation

1 1
—f [|D3w12+3a2ID2wI2+3a4IDwI2+a“lw|2]dz—0r(1+P)J (D*wl*+20* Dwl* +a*|w|?)dz
0 0

1 2 1 2
_quzj [lDwI2+a2|w!2]dz = Ra f §w|2 [az_ _‘Zg_ ]e‘Mzdz
0

Pg,
R2a’ - 2 ' 2
]Dwize Mzdyta |wl [R.e~M2—R,]dz. .. .. .. (4D
Lquatmn (41) clearly shows that if
Rye-¥ > R,
and e .. .. .. .. 42
a? > '—2—

then we must have o, < 0. Thus, (42) gives a sufficient condition of stability
for non-oscillatory modes. It indicates the fact that, even if the fluid is stably
stratified in its initial state, one can be sure about the complete stability of
the system with respect to those non-oscillatory perturbations only whose
wavenumbers (in units of d) exceed M//2. Thus, one gets a feeling that the
violation of conditions (42) might give rise to instability even though the total
density field is gravitationally stable (as in the case of oscillatory modes).
We, therefore, continue the discussion further under the small M approxima-
tion. In that case, one can similarly show that the above sufficient condition
of stability, namely (42), reduces to By > R; only. Thisimplies that if the fluid
is stably stratified in its initial state then the system remains stable to all
infinitesimal non-oscillatory perturbations when the boundaries are free and
the small M approximation holds good.

In fact, under this approximation the characteristic value problem can

be exactly solved in the Present situation and the secular equation is
given by

PP {1+ Plo+ [V —(By— Boalor+ 2% — 0 . 43)
where

) A = p?n’4-a?, .. .. . oo (44
n being an integer.

Equations (43) and (44) show that for a wavenumber satisfying
(n*4-a)?
a?

>RBR=Ry .. .. .. .. )
we have o, <0 and hence stability. Further, since the minimum value of
(m®4a2)? . 27wt 2

e which occurs at a2 = 5 > it follows that so long as

R1<R2+27—" .. .. .. .. (46)
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all the non-oscillatory modes are damped. Thus for instability with respect to
non-oscillatory modes we necessarily have

("2 +a’2)3

a2

<R—R, .. .. .. .. @

Our next attempt is to find out a sufficient condition of instability for these
modes.

3.5. A Sufficient Condition of Instability for Non-oscillatory Modes: Case of
Free Boundaries

For instability we have shown that (47) must necessarily hold good. An
examination of (43), in conditions in which (47) is valid, shows that there are
positive real roots for o, and hence instability, if

A[(1+P){2A8(1 +P)2+9P< (B, — R.)a?— > } + 27a2PR,°
< 4[3P{(R,—Ry)a®— X} + X°(1+ P)*]°. R )
This follows from the theory of equations.
Thus, inequalities (47) and (48) provide sufficient conditions of instability
in the present situation. The above conditions also emphasize the fact that

non-oscillatory modes of the systemr are more stable in character than the
oscillatory modes, a fact noticed by Veronis (1965) also in his analysis.

4. ANALYSIS OF THE GRAVITATIONALLY OpPposiTE CASE

We shall now investigate the stability of a configuration which is gravi-

tationally opposite to that treated in section 3. 1In other words, here we are

interested in the stability problem wherein an exponentially unstably strati-

~ fied (i.e. 8 < 0) layer of an incompressible viscous fluid, statically confined
between two horizontal planes, is cooled from below (i.e. Ty < T4).

The governing differential equations for the present problem can be
obtained from eqns. (11) and (12) of section 2 by replacing w, R;, R, and M
by —w, —R;, — R, and — M respectively (this follows from (14), since g and M
are negative for the present problem). )

These are given by

R.aZeM?z
o07€ w

o(DP—a?—o)(D*—a®)w = R,a%c0+ B

(49)

and
(D*—a2—Po)f = w )

where R;, R, and M are now positive.

4.1. On the Existence of Neutral Modes

We shall show that neutral modes do not exist here. For this, multiplying
eqn. (49) by w* throughout, integrating the resulting equation over the range
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of z by making use of (13) and replacing for f : fw* dz from (50), we have from
the real and imaginary parts of the final equation :

Y 1
a,f LDl 20\ Dol + ol i+ (o =) | (1 Dwl-4alf]d
’ 1 ’ 1 Roa? !
= —Rato, | DB -+atl0F]dz— Ria*Plo+ o) f Bl dat-—5 f eMrhupds
(51)
and
o [ 11DM0lP 4 20\ Dl + atfuwl?)dz-+ 2004 [ [1Dwi+athol*)ds

=_Rlazmf:[|D0g2+a210|2]dz. N (7

Now assume that neutral modes exist so that o, = 0 is allowed by the equa-
tions. Then (52) implies that ¢; = 0 while (51) implies ¢; 2 0. Hence, the
starting assumption, namely ¢, =0, is incorrect and consequently neutral
modes cannot exist; in other words, an arbitrary mode is either damped or
amplified. This totally differs from the results of Stern (1960). The
equations of Stern (1960) allows stationary solutions and possibly over-
stable solutions also at the marginal state. Stern has solved the problem on
the assumption of the principle of exchange of stabilities while the present
equations do not allow any marginal state solution. This discrepancy be-
tween the results of Stern and the present results is attributed to the neglect
of mass diffusivity in the present situation and the point will be further illu-
minated in the treatment of non-oscillatory and oscillatory modes. Further,

it is also clear that the present problem differs markedly in character from that
treated in section 3.

4.2.  Oscillatory Modes

For an oscillatory mode o; 7% 0 and eqn. (52) clearly shows that o, is
negative. Thus, the oscillatory modes are stable irrespective of the presence
of the original unstable stratification and the nature of the bounding surfaces.
It is noted here that Pellew and Southwell’s result, namely all oscillations
must decay when R, = 0 and the layer is cooled from below, is recovered
from here as a corollary. The stability of the oscillatory modes is thus solely
governed by the character of the applied temperature gradient. One further
observes here that oscillatory modes were the more destabilizing ones in
section 3.

Further, one can show from eqns. (51) and (52) (details given in Appendix
B) that for these modes

lodja* > 1/2 for P> 1

forlja® > 1/2P for A< P <1}, | .. .. (83)
and

lorlfa® >1 for P < 1/2
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4.3. Non-oscillatory Modes: Case of Free Boundaries

Here we shall analyse the problem under the small M approximation.
In that case the characteristic value problem can be exactly solved and we
obtain the secular equation as

[PXop D41+ P)lo2+[(R—Ry)a?+ )0, —

where both B, and R, are positive.

Equation (54) has clearly one positive root for o, and this implies instability.
Thus, the presence of an unstable original density stratification makes the
non-oscillatory modes of the system unstable, whatever be the ‘stabilizing
temperature gradient. In the model analysed by Stern (1960), the non-
oscillatory modes of the system are amplified only if the original unstable
stratification exceeds certain critical value (assuming the validity of the
principle of exchange of stabilities) but this is not so in the present case and
in this respect the present result is particularly striking. The reason for this
lies in the smallness of the coefficients of mass diffusion. Actually, as noted
by Stern, the mass diffusivity and the heat diffusivity respectively play a stabi-
lizing and destabilizing role for marginal non-oscillatory modes and conse-
quently it is expected that the neglect of mass diffusion will make an arbitrary
non-oscillatory mode amplify. Further, while in section 3 we obtained a
sufficient condition of stability as well as instability for non-oscillatory modes,
we do not have such conditions here. On the other hand, these modes are
the destabilizing ones for the present problem.

We further state without proof (which is a bit lengthy) that under the
condition that the eigenfunetion w is real and |o,|/a? < 1/2, one can prove the
instability of non-oscillatory modes for rigid boundaries without using the
small M approximation.

2
R;“ =0 .. (54

5. SpiraLlL Frows: BouNDs oF THE FrEQUENCY OF OSCILLATIONS

The governing differential equations and the boundary conditions of the
linear axisymmetric stability problem of spiral flows are given by

[(Dy#—a,®)—i(o1+ Ra) ][ D EF—aFlu—12iRau = v .. .. (85)

and
[(D2—a.2)—i(os+Ra) v = —Ta2u .. .. .. .. (56)

with
u=Du=v=0 for {=+1/2 .. .. N Y

where the symbols used in the above equations have the same meaning as
given by Chandrasekhar (1961) except that the suffix 1 is attached with D,
a and o, in order to avoid any confusion with the symbols of the present paper.

We now consider the above system of equations for marginal modes.
For such modes o, is purely real and then the above equations are
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mathematically equivalent to the system of equations consisting of (21), (22)
and (23) with the following identification:
w=1u; og=a0+Ra,; P=1
R.a?

F=v;~P;:=12Ra1; .o .. .. (58)

a=a,; Ri=T
Now, for eqns. (21), (22) and (23) the circle theorem gives
o < Ra. O £:11)

(It is to be noted here that the condition of oscillatory modes which is neces-
sary for the validity of the circle theorem is automatically satisfied because
the marginal modes are definitely oscillatory.)

Inequality (59) gives, for eqns. (55), (56) and (57),

—Ra, < o1 < li——R — Ra,. .. .. .. (60)
1

The above gives the bounds for the frequency of oscillations of the mar-
ginal modes in the stability problem of spiral flows. It is easily seen that
these bounds are in complete accordance with the numerical calculations of
Chandrasekhar (1961).

In fact, inequality (60) holds good for non-marginal modes of the system
also (that is, when o) = o,+1i0y; is complex.). To prove this, we multiply
eqn. (55) by u* (u* being the complex conjugate of ) throughout, integrate
the resulting equation over the range of { by making use of eqn. (57), replace

forfl_lj o vu*d{ from eqn. (56) and obtain by separating in the imaginary part
of the final equation

/g 12R 12
(01r+Ra1)f y |Dyui*dl+a? (01r+R0q—- a—)f lui2dd
-1/ 1

-1z

(0174 Ray) J’llz
—_—_— 23y _.
T Tap _112|v| df=0. .. . .. . . N (7))
Equation (61) clearly shows that
12B

=~ _Ra,.
P 1

—Ra; <oy <

Consequently, non-oscillatory modes cannot exist for wavenumbers exceeding
J/12. In other words, principle of exchange of stabilities appears rather
unlikely.

6. CoNcrLupiNG REMARKS

We shall end up with the discussions here with a few remarks on the
relationship between the present work and the experiments performed on
thermal and thermohaline convection. The results of Turner and Stommel
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(1964), Turner (1968), Shirteliffe (1969) and others bear ample evidence of
the fact that thermohaline instability sets in as overstability, a result-which is so
correctly predicted by the present work. It appears that the present work
can accurately describe, both with respeet to qualitative as well as quantitative
points of view, the phenomenon of thermohaline convection where the mass
diffusivity of the solute is negligible in comparison to its heat diffusivity.
Further, in the experiments on thermal convection, namely the experiments of
Bénard (1900), Schmidt and Milverton (1935), Silveston (1958) and others,
although there is, in general, an agreement between the experimental and the
theoretically calculated critical Rayleigh number but still this can hardly be
called a very good agreement. This lack of agreement is possibly due to the
neglect of the gravitational effects of original non-homogeneity in the theo-
retical investigations, which cannot always be justified. A recalculation of
the critical Rayleigh number by including the effects of this original non-
homogeneity may put the above work on firm grounds.
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APPENDIX A: VARIATIONAL PRINCIPLES

Let us consider the marginal state of the system. In that case, eqns.
(11), (12) together with the boundary conditions (13) can be conveniently
combined to yield

f ' (DF) 462 F* +iPo. F?)dz
[}]

a*Ry = — 1 T 2 [l
f [(D20)? 4202 Dw)*+a*w?)dz +ia, f [(Dw)? + a*u?]dz— ’1;2: f ue-Mrdy
0 0 ] 0
(62)
where
F = R.a*0 N ()

one can show that R, given by (62) has a stationary property when the quanti-
ties on the right-hand side are evaluated in terms of the true characteristic
functions w.

Similarly, one can show that R, given by

~1

1 2 f1
ia;J- [(Dgw)2+2a2(Dw)2+a4w2]dz-—cizJ [{(Dw)®+a®w?] dz+1% f e~Mzy2d,
Rl —_ [\] 1] [1]

iow® | * (D)2 262+ i Poi6?)
1]

~

(64)
(which can again be obtained from (11), (12) and (13)) has a stationary

property when the quantities on the right-hand side are evaluated in terms of
the true characteristic function.

The above variational principles provide useful means of evaluating the
critical Rayleigh number when the surfaces bounding the fluid are rigid.

ArpeENDIX B: DEDUCTION OF (53)
One can put (52) as
2= o)) [ : (Dl dz—alor| (@ —2lor) [ " aPwitdz < 0. .. (65)
0
Further, (51) and (52) can be combined as

~lorl (22— ov]) [ 1Dulde—a?lo (@~ |oy)) [} wide—Riaiorl (@~ Plor) [ 1012
1] [} [1]

2 1
—%(az—mc,m) f [1Dw[?+a2|w|*]dz > 0. .. .. .. (66)
0

From (65) and (66) result (53) follows.



