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The momentum integral and the kinetic energy integral equations for axi-
symmetric boundary layers with suction have been used with the aid of a singly
infinite family of velocity profiles to study the rotationally symmetrical stagna-
tion point flow with uniform suction. The results obtained have been found
to be better than those obtained by Schlichting by the use of the momentum
integral equation and wall compatibility condition.

1. INTRODUCTION

Homann (1936) and Frossling (1940) first obtained the exact solution of
the Navier-Stokes equations for the rotationally symmetrical stagnation point
flow and found that the boundary layer thickness was independent of the
distance along the wall and the velocity profiles were similar.

Schlichting (1948) used the momentum integral equation to calculate
the axisymmetric stagnation point flow with suction. Truckenbrodt (1956)
made an estimate of the function in the momentum integral equation and
suggested a simplified method for the calculation of the momentum thickness.

In the present paper the momentum and the kinetic energy integral
equations have been used to calculate the boundary layer for the rotationally
symmetrical stagnation point flow with uniform suction. The value of the
momentum thickness parameter for a solid wall problem obtained by the
present method is seen to be more accurate than the value obtained by the
other known methods and it is expected that the results for a porous wall
problem too obtained by the present method would be the most satisfactory.
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2. MoMmeNTUM INTEGRAL EQUATION

For steady axisymmetric incompressible flow the boundary layer equa-
tion and the equation of continuity are:

ou o0%u

+ i U + o W
O(ur) O(vr) .
ey =0 W

Here z is the coordinate along the meridian section, y the coordinate normal
to the surface and u, v the velocities along z, y respectively. r(x) is the radius

of cross-section at right angles to the axis.
With continuous suction at the surface the boundary conditions are

y=0: u=0. V=0,
} .. .. (3

where v; is the normal velocity at the surface and U(x) is the potential flow

velocity.
Y d(ur)
Substituting for v = vs— f T om dy

from eqn. (2) into eqn. (1) and integrating across the boundary layer, we get
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3. . KineTic ENERGY INTEGRAL EQUATION
Adding

w {O(ur)  ovr) |
5;{—5;;4-*@-;

to the left-hand side of eqn. (1), multiplying through by « and integrating
across the boundary layer we have

i(‘_j)_—_‘?—UH—‘[QD—(SA-I—z)HE—{-A] R /-
=Ll )]
v=[(5) (3) ()

The variation of H. is given by

where

and

dH, 1
T = 5 2D Bl (H=1) A0+, (B

4. Warr CoMpATIBILITY CONDITION

At the surface of the body where u = 0 and v = v; eqn. (1) becomes

a%u au ou
(5= 0T +(3),

m==—dAd+IX .. .. .. .. - (7)

_Qf(aﬁt)
"=T oy* y=0

5. FamiLy of VELocITY PROFPILES (SCHLICHTING 1949)

ie.

where

The one parameter family of velocity profiles given by Schlichting (1949)
for the approximate calculation of the boundary layers with suction is

7 = Fin) + K Fyfn)
where
77 5@)
Fy(n) = 1—¢-

Fy(n) = F,~— Sin%ﬂ, 0<9<3
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and
FZ(’)])=F1—1, 77>3-
For this system of velocity profiles the values of g, H,, H, 1 and D against K

are shown in Table I (Choudhury 1967). With this system of profiles the
compatibility condition (eqn. 7) takes the form,

6\> 0 -
(g) (1+K)+§/\[(1—6)K]—A=O. .. )

TasBLE I

Boundary layer characteristics for various values of the
parameter K of Schlichiing’s profile

K A He H ! D
+0:0 0-500 1667  2:000 0500  0-260
—~0-1 0-493 1657 2046 0470 0239
~0-2 0486 1647 2096 0440  0-229
—0:3 0-478 14637 2149 0410 0219
—0-4 0470 1627 2206 0380 0210
—05 0461 1616 2268 0351 0-202
—0-6 0-451 1604 2335 0322 0197
0.7 0-442 1-592 2406 0204  0-187
—08 0-432 1580 2484 0267 0180
—09 0-421 1-567 2568 0241 0174
—10 0-410 1553 2660 0215 0168
—11 0-398 1539 2761 0189 0163
—12 0-386 1624 2870 0165 0158
—13 0-373 1-509 2991 o142 0153
—14 0-360 1493 3124 0120 0149
—15 0-347 1475 3271 0099 0145
~16 0-333 1456 3436 0079 0141
—17 0-319 1436 3619  0-061 0137
—18 0-304 1414 3828 043 0133
—19 0288 1390 4063 0027 0129
—20 2272 1264 4333 0013 0125
—2:099 0256 1336 4642 0000 0120

Separation

6. AXISYMMETRIC STAGNATION PoinT Frow witH UNIFORM SUCTION
(a) Equations

An investigation is being made into the axisymmetric stagnation point
flow with uniform suction, A fluid stream impinges on a porous wall at right
angles to it and flows away radially in all directions. A small uniform suction
is imposed through the permeable surface of the body. The velocity for
potential flow is given by

Ux) = gi—x
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where a is the representative length and r(z) = « defines the body contour,
Let

. X
Fo=-
o
F="® 5
@ -
and
= _ U@ _
U——UO = 7.
Then
a0
=%
A tda‘c ¢
U dr
P
Z =t & ¢
A= t*g,,

Thus for axisymmetric stagnation point flow along a porous wall the mo-
mentum integral eqn. (4), the kinetie energy integral eqn. (6) and the com-
patibility condition (7) become

dt

*

== g [I— (34 H)t* + 5,1%4] . e (9

(ige = ;t;[ZD-—HE {I—(H—1)t* - 5,8%8} - 5,¢%4) .. .. (10}

and ’
(-0)2(1+K g-t*§’1 (1 77)K} t*=0 11

: e 1o L L S e e A (1)

At the stagnation point (z = 0) the momentum integral and the kinetic

. &
energy integral equations exhibit singularity. If % and % are to remain

finite at the stagnation point

I—(3+H)*o,1% =0 .. .. .. (12)
and

2D—H {I—(H—1){*0,4*4} L 5,4%t = 0. . .o (13)

These two equations together with the compatibility condition (eqn. 11)
may be used to calculate the boundary layer for axisymmetric stagnation
point flow along a porous wall.

(b) Solution of the Momentum Integral Equation and the Compatibility Condition

For impermeable wall, &; = 0, and eqns. (11) and (12) reduce to

(g)2(1+}()—t*=0 .. .. .. .. (14)

2B
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I—@+H)*=0. .. .. .. .. (15
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The values obtained by the numerical solution of eqns. (14) and (15) with the
help of Table I are:

t* = (-0528
[/

5 0-439
l 0-287
H = 2427,

For permeable surface 7; 7 0 and equations (11) and (12) have been solved
numerically.

The variation of t* and H, against the suction parameter —&, is shown
in Figs. 1 and 2 (see curve b).

(c) Solution of the Momentum Integral and the Kinetic Energy Integral Equations

More accurate results would be obtained by solving the momentum
integral equation (12) and the kinetic energy integral equation (13).
For 5, = 0, eqns. (12) and (13) reduce to

—B+H* =0 .. .. .. .. (16
and

2D~ H{l—(H—1)t*} = 0. ce o oam
The values obtained by the numerical solution of eqns. (16) and (17) are:

t* = 00617

K = —0-598

! = 0323

H = 2233

H, = 1604

D = 0194,

For 7, 3 0, a particular value is assigned to K and the corresponding values of
I, H, H, and D are read from Table I. With these values eqns. (12) and (13)
are solved for 4, and i*.

The variation of #* and H, obtained by the solution of eqns. (12) and (13)
is represented by curve (a) in Figs. 1 and 2.

A comparison of the values of ¢* against the suction parameter &, ob-
tained by the various methods has been made in Table II.

For a solid wall problem (¢, = 0) the value of the momentum thickness
parameter t* obtained by the present method of solution of the momentum
integral and the kinetic energy integral equations is 0-0617 and that obtained
by the solution of the momentum integral equation and the compatibility
condition is 0-0528. The value given by Schlichting (1948) by the use of
momentum equation is 0-0530 and that obtained by Truckenbrodt (1956) is
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0-0491. According to the quadrature formula of Rott and Crabtree (1952)
t* = 0-0587. The exact value given by Homann (1938) is 0-0610.

TasrE II

Comparison of the values of t* for various values of vs

¥

Present method
Solution of the of solution of

DA momentum in- the momen-
Truckenbrodt  tegral equation tum integral
(1956) and the com- and the kine-
patibility tic energy
condition integral
equations
00 0-049 0-053 0-062
—0-2 0-048 0-047 0-054
—0-4 0-044 0-041 0-048
—0-6 0-041 0-036 0-043
—0-8 0-037 0-033 0-039
—1-0 0-033 0-029 0-035
—1-2 0-031 0-026 - 0-032
—1-4 0-028 0-024 0-029
—16 0-026 0-021 0-026
—1-8 0-024 0-019 0-024
—2:0 0-022 0-018 0-022

The above comparison of the values of ¢* for the axisymmetric stagnation
point flow along a solid wall shows that the result obtained by the use of the
momentum integral and the kinetic energy integral equations is the most
satisfactory and is closest to the exact value of Homann (1936). Therefore,
the value of ¢* and the other parameters for various values of 7; obtained by
the solution of the momentum integral and the kinetic energy integral equa-
tions [curve () in Figs. 1 and 2] can be taken as representing the most accurate

values.

ar and il

dz dz
are indeterminate at the stagnation point. Their values are obtained by
going over to the limit with the aid of the compatibility condition. For uni-
form suction both

a and dH,

dz dz
are seen to vanish at the stagnation point with the result that ¢* and H.
remain independent of Z near the stagnation point.
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